Spline embedding for nonlinear dimensionality reduction

Shiming Xiang, Feiping Nie, Changshui Zhang, Chunxia Zhang

科研成果: 书/报告/会议事项章节会议稿件同行评审

10 引用 (Scopus)

摘要

This paper presents a new algorithm for nonlinear dimensionality reduction (NLDR). Smoothing splines are used to map the locally-coordinatized data points into a single global coordinate system of lower dimensionality. In this work setting, we can achieve two goals. First, a global embedding is obtained by minimizing the low-dimensional coordinate reconstruction error. Second, the NLDR algorithm can be naturally extended to deal with out-of-sample data points. Experimental results illustrate the validity of our method.

源语言英语
主期刊名Machine Learning
主期刊副标题ECML 2006 - 17th European Conference on Machine Learning, Proceedings
出版商Springer Verlag
825-832
页数8
ISBN(印刷版)354045375X, 9783540453758
DOI
出版状态已出版 - 2006
已对外发布
活动17th European Conference on Machine Learning, ECML 2006 - Berlin, 德国
期限: 18 9月 200622 9月 2006

出版系列

姓名Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
4212 LNAI
ISSN(印刷版)0302-9743
ISSN(电子版)1611-3349

会议

会议17th European Conference on Machine Learning, ECML 2006
国家/地区德国
Berlin
时期18/09/0622/09/06

指纹

探究 'Spline embedding for nonlinear dimensionality reduction' 的科研主题。它们共同构成独一无二的指纹。

引用此