摘要
Accurate quantification of metallic contaminants in rocket exhaust plumes serves as a critical diagnostic indicator for engine wear monitoring. This paper develops a hybrid method combining atomic emission spectroscopy (AES) theory with a genetic algorithm (GA) optimized backpropagation (BP) network to quantify the metallic element concentrations in liquid-propellant rocket exhaust plumes. The proposed method establishes linearized intensity–concentration mapping through the introduction of a photon transmission factor, which is derived from radiative transfer theory and experimentally calibrated via AES measurement. This critical innovation decouples the inherent nonlinearities arising from self-absorption artifacts. Through the use of the transmission factor, the training dataset for the BP network is systematically constructed by performing spectral simulations of atomic emissions. Finally, the trained network is employed to predict the concentration of metallic elements from the measured atomic emission spectra. These spectra are generated by introducing a solution containing metallic elements into a CH4-air premixed jet flame. The predictive accuracy of the method is rigorously evaluated through 32 independent experimental trials. Results show that the quantification error of metallic elements remains within 6%, and the method exhibits robust performance under conditions of spectral self-absorption, demonstrating its reliability for rocket engine health monitoring applications.
源语言 | 英语 |
---|---|
文章编号 | 427 |
期刊 | Aerospace |
卷 | 12 |
期 | 5 |
DOI | |
出版状态 | 已出版 - 5月 2025 |