Spatio-Temporal Interactive Learning for Efficient Image Reconstruction of Spiking Cameras

Bin Fan, Jiaoyang Yin, Yuchao Dai, Chao Xu, Tiejun Huang, Boxin Shi

科研成果: 期刊稿件会议文章同行评审

摘要

The spiking camera is an emerging neuromorphic vision sensor that records high-speed motion scenes by asynchronously firing continuous binary spike streams. Prevailing image reconstruction methods, generating intermediate frames from these spike streams, often rely on complex step-by-step network architectures that overlook the intrinsic collaboration of spatio-temporal complementary information. In this paper, we propose an efficient spatio-temporal interactive reconstruction network to jointly perform inter-frame feature alignment and intra-frame feature filtering in a coarse-to-fine manner. Specifically, it starts by extracting hierarchical features from a concise hybrid spike representation, then refines the motion fields and target frames scale-by-scale, ultimately obtaining a full-resolution output. Meanwhile, we introduce a symmetric interactive attention block and a multi-motion field estimation block to further enhance the interaction capability of the overall network. Experiments on synthetic and real-captured data show that our approach exhibits excellent performance while maintaining low model complexity. The code is available at https://github.com/GitCVfb/STIR.

源语言英语
期刊Advances in Neural Information Processing Systems
37
出版状态已出版 - 2024
活动38th Conference on Neural Information Processing Systems, NeurIPS 2024 - Vancouver, 加拿大
期限: 9 12月 202415 12月 2024

指纹

探究 'Spatio-Temporal Interactive Learning for Efficient Image Reconstruction of Spiking Cameras' 的科研主题。它们共同构成独一无二的指纹。

引用此