TY - GEN
T1 - Spatio-temporal clustering model for multi-object tracking through occlusions
AU - Zhang, Lei
AU - Wang, Qing
PY - 2013
Y1 - 2013
N2 - The occlusion in dynamic or clutter scene is a critical issue in multi-object tracking. Using latent variable to formulate this problem, some methods achieved state-of-the-art performance, while making an exact solution computationally intractable. In this paper, we present a hierarchical association framework to address the problem of occlusion in a complex scene taken by a single camera. At the first stage, reliable tracklets are obtained by frame-to-frame association of detection responses in a flow network. After that, we propose to formulate tracklets association problem in a spatio-temporal clustering model which presents the problem as faithfully as possible. Due to the important role that affinity model plays in our formulation, we then construct a sparsity induced affinity model under the assumption that a detection sample in a tracklet can be efficiently represented by another tracklet belonging to the same object. Furthermore, we give a near-optimal algorithm based on globally greedy strategy to deal with spatio-temporal clustering, which runs linearly with the number of tracklets. We quantitatively evaluate the performance of our method on three challenging data sets and achieve a significant improvement compared to state-of-the-art tracking systems.
AB - The occlusion in dynamic or clutter scene is a critical issue in multi-object tracking. Using latent variable to formulate this problem, some methods achieved state-of-the-art performance, while making an exact solution computationally intractable. In this paper, we present a hierarchical association framework to address the problem of occlusion in a complex scene taken by a single camera. At the first stage, reliable tracklets are obtained by frame-to-frame association of detection responses in a flow network. After that, we propose to formulate tracklets association problem in a spatio-temporal clustering model which presents the problem as faithfully as possible. Due to the important role that affinity model plays in our formulation, we then construct a sparsity induced affinity model under the assumption that a detection sample in a tracklet can be efficiently represented by another tracklet belonging to the same object. Furthermore, we give a near-optimal algorithm based on globally greedy strategy to deal with spatio-temporal clustering, which runs linearly with the number of tracklets. We quantitatively evaluate the performance of our method on three challenging data sets and achieve a significant improvement compared to state-of-the-art tracking systems.
UR - http://www.scopus.com/inward/record.url?scp=84875876667&partnerID=8YFLogxK
U2 - 10.1007/978-3-642-37431-9_14
DO - 10.1007/978-3-642-37431-9_14
M3 - 会议稿件
AN - SCOPUS:84875876667
SN - 9783642374302
T3 - Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
SP - 177
EP - 190
BT - Computer Vision, ACCV 2012 - 11th Asian Conference on Computer Vision, Revised Selected Papers
T2 - 11th Asian Conference on Computer Vision, ACCV 2012
Y2 - 5 November 2012 through 9 November 2012
ER -