TY - JOUR
T1 - Solution-Grown Formamidinium Hybrid Perovskite (FAPbBr3) Single Crystals for α-Particle and γ-Ray Detection at Room Temperature
AU - Liu, Xin
AU - Xu, Meng
AU - Hao, Yingying
AU - Fu, Jinghua
AU - Wang, Fangbao
AU - Zhang, Binbin
AU - Bennett, Stephanie
AU - Sellin, Paul
AU - Jie, Wanqi
AU - Xu, Yadong
N1 - Publisher Copyright:
© 2021 American Chemical Society.
PY - 2021/4/7
Y1 - 2021/4/7
N2 - Compared with the widely reported MAPbBr3 single crystals, formamidinium-based (FA-based) hybrid perovskites FAPbBr3 (FPB) with superior chemical and structure stability are expected to be more efficient and perform as more reliable radiation detectors at room temperature. Here, we employ an improved inverse temperature crystallization method to grow FPB bulk single crystals, where issues associated with the retrograde solubility behavior are resolved. A crystal growth phase diagram has been proposed, and accordingly, growth parameters are optimized to avoid the formation of NH4Pb2Br5 secondary phase. The resulting FPB crystals exhibit a high resistivity of 2.8 × 109 ω·cm and high electron and hole mobility-lifetime products (μτ) of 8.0 × 10-4 and 1.1 × 10-3 cm2·V-1, respectively. Simultaneously, the electron and hole mobilities (μ) are evaluated to be 22.2 and 66.1 cm2·V-1·s-1, respectively, based on the time-of-flight technique. Furthermore, a Au/FPB SC/Au detector is constructed that demonstrates a resolvable gamma peak from 59.5 keV 241Am γ-rays at room temperature for the first time. An energy resolution of 40.1% is obtained at 30 V by collecting the hole signals. These results demonstrate the great potential of FAPbBr3 as a hybrid material for γ-ray spectroscopy and imaging.
AB - Compared with the widely reported MAPbBr3 single crystals, formamidinium-based (FA-based) hybrid perovskites FAPbBr3 (FPB) with superior chemical and structure stability are expected to be more efficient and perform as more reliable radiation detectors at room temperature. Here, we employ an improved inverse temperature crystallization method to grow FPB bulk single crystals, where issues associated with the retrograde solubility behavior are resolved. A crystal growth phase diagram has been proposed, and accordingly, growth parameters are optimized to avoid the formation of NH4Pb2Br5 secondary phase. The resulting FPB crystals exhibit a high resistivity of 2.8 × 109 ω·cm and high electron and hole mobility-lifetime products (μτ) of 8.0 × 10-4 and 1.1 × 10-3 cm2·V-1, respectively. Simultaneously, the electron and hole mobilities (μ) are evaluated to be 22.2 and 66.1 cm2·V-1·s-1, respectively, based on the time-of-flight technique. Furthermore, a Au/FPB SC/Au detector is constructed that demonstrates a resolvable gamma peak from 59.5 keV 241Am γ-rays at room temperature for the first time. An energy resolution of 40.1% is obtained at 30 V by collecting the hole signals. These results demonstrate the great potential of FAPbBr3 as a hybrid material for γ-ray spectroscopy and imaging.
KW - charge transport
KW - energy resolution
KW - hybrid halide perovskite
KW - semiconductor radiation detectors
KW - α-particle detection
KW - γ-ray spectroscopy
UR - http://www.scopus.com/inward/record.url?scp=85104046730&partnerID=8YFLogxK
U2 - 10.1021/acsami.1c00174
DO - 10.1021/acsami.1c00174
M3 - 文章
C2 - 33764046
AN - SCOPUS:85104046730
SN - 1944-8244
VL - 13
SP - 15383
EP - 15390
JO - ACS Applied Materials and Interfaces
JF - ACS Applied Materials and Interfaces
IS - 13
ER -