Solid Electrolyte Interface in Zn-Based Battery Systems

Xinyu Wang, Xiaomin Li, Huiqing Fan, Longtao Ma

科研成果: 期刊稿件文献综述同行评审

146 引用 (Scopus)

摘要

Due to its high theoretical capacity (820 mAh g−1), low standard electrode potential (− 0.76 V vs. SHE), excellent stability in aqueous solutions, low cost, environmental friendliness and intrinsically high safety, zinc (Zn)-based batteries have attracted much attention in developing new energy storage devices. In Zn battery system, the battery performance is significantly affected by the solid electrolyte interface (SEI), which is controlled by electrode and electrolyte, and attracts dendrite growth, electrochemical stability window range, metallic Zn anode corrosion and passivation, and electrolyte mutations. Therefore, the design of SEI is decisive for the overall performance of Zn battery systems. This paper summarizes the formation mechanism, the types and characteristics, and the characterization techniques associated with SEI. Meanwhile, we analyze the influence of SEI on battery performance, and put forward the design strategies of SEI. Finally, the future research of SEI in Zn battery system is prospected to seize the nature of SEI, improve the battery performance and promote the large-scale application.[Figure not available: see fulltext.]

源语言英语
文章编号205
期刊Nano-Micro Letters
14
1
DOI
出版状态已出版 - 12月 2022

指纹

探究 'Solid Electrolyte Interface in Zn-Based Battery Systems' 的科研主题。它们共同构成独一无二的指纹。

引用此