SmoothNet: Smooth Point Cloud Up-sampling

Ziyun Xu, Xiaoyi Feng, Lili Liu

科研成果: 书/报告/会议事项章节会议稿件同行评审

摘要

The 3D point cloud collected by LIDAR (Light Detection and Ranging) is usually sparse. However, for example, in the field of digitization of cultural relics, a denser, more uniform, and smoother point cloud is often required when analyzing and displaying models. Therefore, this paper proposes a novel deep learning structure for the field of point cloud up-sampling. Concretely, we use multi-layer GCN to extract point cloud features, in addition, introduce shuffle module to achieve multi-feature expansion. Besides, a new smoothing loss function is designed to enhance the local smoothness of point clouds. Under the PU600 dataset, our method outperforms other existing methods and performs better on building or cultural relic point clouds.

源语言英语
主期刊名Proceedings - 2022 International Conference on Image Processing and Media Computing, ICIPMC 2022
出版商Institute of Electrical and Electronics Engineers Inc.
46-50
页数5
ISBN(电子版)9781665468725
DOI
出版状态已出版 - 2022
活动2022 International Conference on Image Processing and Media Computing, ICIPMC 2022 - Xi�an, 中国
期限: 27 5月 202229 5月 2022

出版系列

姓名Proceedings - 2022 International Conference on Image Processing and Media Computing, ICIPMC 2022

会议

会议2022 International Conference on Image Processing and Media Computing, ICIPMC 2022
国家/地区中国
Xi�an
时期27/05/2229/05/22

引用此