Simulation research on breakdown diagnosis based on least squares support vector machine optimized by simulated annealing genetic algorithm

Dawei Zhang, Weilin Li, Chenggang Wang, Jianhai Li

科研成果: 期刊稿件文章同行评审

1 引用 (Scopus)

摘要

The application of support vector machine to the aircraft power supply system breakdown diagnosis is one of the research focuses in the tomorrow. Support vector machine (SVM) belongs a new type of machine learning technique, which uses structural hazard minimization rule to substitute for the conventional empirical hazard minimization according to great specimen. The powerful performance of the least squares support vector machine (LSSVM) needs to be reflected in the optimal selection of appropriate parameters, and the quality of parameters greatly affects the accuracy and efficiency of breakdown diagnosis. The traditional LSSVM parameters selection method is inefficient, the calculation is huge, and it takes expensive time to select the satisfactory solution. Aiming at the problem of parameters selection of LSSVM, the way of optimizing the parameters of LSSVM by apply simulated annealing genetic algorithm (SAGA) is proposed. SAGA uses the parallel sampling process of genetic algorithm to improve the time performance of optimization, and makes use of the simulated annealing algorithm to dominate the constriction of majorization to prevent precocity. On the one hand, genetic algorithm has strong ability to grasp the overall search process, on the other hand, simulated annealing algorithm is used to control the convergence of the algorithm to prevent premature phenomenon. The automatic optimal selection of LSSVM parameters is achieved. The Iris system classification and recognition in the UCI machine learning database and the breakdown diagnosis of the autopilot flight control box are used as experimental platforms to obtain data samples for simulation research. The simulation results show that LSSVM optimized by SAGA improves both the accuracy and efficiency of classification recognition. It not only effectively overcomes the problem of low efficiency caused by searching optimal parameters by experience, but also effectively improves the accuracy of classification recognition. The false alarm rate and redundant breakdowns are effectively reduced.

源语言英语
文章编号2350046
期刊International Journal of Modeling, Simulation, and Scientific Computing
15
1
DOI
出版状态已出版 - 1 2月 2024

指纹

探究 'Simulation research on breakdown diagnosis based on least squares support vector machine optimized by simulated annealing genetic algorithm' 的科研主题。它们共同构成独一无二的指纹。

引用此