Simple Multigraph Convolution Networks

Danyang Wu, Xinjie Shen, Jitao Lu, Jin Xu, Feiping Nie

科研成果: 书/报告/会议事项章节会议稿件同行评审

摘要

Existing multigraph convolution methods either ignore the cross-view interaction among multiple graphs, or induce extremely high computational cost due to standard cross-view polynomial operators. To alleviate this problem, this paper proposes a Simple MultiGraph Convolution Networks (SMGCN) which first extracts consistent cross-view topology from multigraphs including edge-level and subgraph-level topology, then performs polynomial expansion based on raw multigraphs and consistent topologies. In theory, SMGCN utilizes the consistent topologies in polynomial expansion rather than standard cross-view polynomial expansion, which performs credible cross-view spatial message-passing, follows the spectral convolution paradigm, and effectively reduces the complexity of standard polynomial expansion. In the simulations, experimental results demonstrate that SMGCN achieves state-of-the-art performance on ACM and DBLP multigraph benchmark datasets. Our codes are available at here.

源语言英语
主期刊名WWW 2024 Companion - Companion Proceedings of the ACM Web Conference
出版商Association for Computing Machinery, Inc
794-797
页数4
ISBN(电子版)9798400701726
DOI
出版状态已出版 - 13 5月 2024
活动33rd ACM Web Conference, WWW 2024 - Singapore, 新加坡
期限: 13 5月 202417 5月 2024

出版系列

姓名WWW 2024 Companion - Companion Proceedings of the ACM Web Conference

会议

会议33rd ACM Web Conference, WWW 2024
国家/地区新加坡
Singapore
时期13/05/2417/05/24

指纹

探究 'Simple Multigraph Convolution Networks' 的科研主题。它们共同构成独一无二的指纹。

引用此