摘要
A hierarchical iterative algorithm for the canonical polyadic decomposition (CPD) of tensors is proposed by improving the traditional conjugate gradient least squares (CGLS) method. Methods based on algebraic operations are investigated with the objective of estimating the direction of arrival (DoA) and polarization parameters of signals impinging on an array with electromagnetic (EM) vector-sensors. The proposed algorithm adopts a hierarchical iterative strategy, which enables the algorithm to obtain a fast recovery for the highly collinear factor matrix. Moreover, considering the same accuracy threshold, the proposed algorithm can achieve faster convergence compared with the alternating least squares (ALS) algorithm wherein the highly collinear factor matrix is absent. The results reveal that the proposed algorithm can achieve better performance under the condition of fewer snapshots, compared with the ALS-based algorithm and the algorithm based on generalized eigenvalue decomposition (GEVD). Furthermore, with regard to an array with a small number of sensors, the observed advantage in estimating the DoA and polarization parameters of the signal is notable.
源语言 | 英语 |
---|---|
页(从-至) | 922-931 |
页数 | 10 |
期刊 | ETRI Journal |
卷 | 42 |
期 | 6 |
DOI | |
出版状态 | 已出版 - 12月 2020 |