SFNet: Clothed Human 3D Reconstruction via Single Side-To-Front View RGB-D Image

Xing Li, Yangyu Fan, Di Xu, Wenqing He, Guoyun Lv, Shiya Liu

科研成果: 书/报告/会议事项章节会议稿件同行评审

4 引用 (Scopus)

摘要

Front-view human information is critical for reconstructing a detailed 3D human body from a single RGB/RGB-D image. However, we sometimes struggle to access the front-view portrait in practice. Thus, in this work, we propose a bidirectional network (SFNet), one branch to transform side-view RGB image to front-view and another to transform side-view depth image to front-view. Since normal maps typically encode more 3D surface detail information than depth maps, we leverage an adversarial learning framework conditioned on normal maps to improve the performance of predicting front-view depth. Our method is end-To-end trainable, resulting in high fidelity front-view RGB-D estimation and 3D reconstruction.

源语言英语
主期刊名2022 8th International Conference on Virtual Reality, ICVR 2022
出版商Institute of Electrical and Electronics Engineers Inc.
15-20
页数6
ISBN(电子版)9781665479110
DOI
出版状态已出版 - 2022
活动8th International Conference on Virtual Reality, ICVR 2022 - Nanjing, 中国
期限: 26 5月 202228 5月 2022

出版系列

姓名International Conference on Virtual Rehabilitation, ICVR
2022-May
ISSN(电子版)2331-9569

会议

会议8th International Conference on Virtual Reality, ICVR 2022
国家/地区中国
Nanjing
时期26/05/2228/05/22

指纹

探究 'SFNet: Clothed Human 3D Reconstruction via Single Side-To-Front View RGB-D Image' 的科研主题。它们共同构成独一无二的指纹。

引用此