Sequence to multi-sequence learning via conditional chain mapping for mixture signals

Jing Shi, Xuankai Chang, Pengcheng Guo, Shinji Watanabe, Yusuke Fujita, Jiaming Xu, Bo Xu, Lei Xie

科研成果: 期刊稿件会议文章同行评审

20 引用 (Scopus)

摘要

Neural sequence-to-sequence models are well established for applications which can be cast as mapping a single input sequence into a single output sequence. In this work, we focus on one-to-many sequence transduction problems, such as extracting multiple sequential sources from a mixture sequence. We extend the standard sequence-to-sequence model to a conditional multi-sequence model, which explicitly models the relevance between multiple output sequences with the probabilistic chain rule. Based on this extension, our model can conditionally infer output sequences one-by-one by making use of both input and previously-estimated contextual output sequences. This model additionally has a simple and efficient stop criterion for the end of the transduction, making it able to infer the variable number of output sequences. We take speech data as a primary test field to evaluate our methods since the observed speech data is often composed of multiple sources due to the nature of the superposition principle of sound waves. Experiments on several different tasks including speech separation and multi-speaker speech recognition show that our conditional multi-sequence models lead to consistent improvements over the conventional non-conditional models.

源语言英语
期刊Advances in Neural Information Processing Systems
2020-December
出版状态已出版 - 2020
活动34th Conference on Neural Information Processing Systems, NeurIPS 2020 - Virtual, Online
期限: 6 12月 202012 12月 2020

指纹

探究 'Sequence to multi-sequence learning via conditional chain mapping for mixture signals' 的科研主题。它们共同构成独一无二的指纹。

引用此