Self-Supervised Denoising of Diffusion MRI Data Via Spatio-Angular Noise2Noise

Haotian Jiang, Shu Zhang, Xuyun Wen, Hui Cui, Jun Lu, Islem Rekik, Jiquan Ma, Geng Chen

科研成果: 书/报告/会议事项章节会议稿件同行评审

1 引用 (Scopus)

摘要

Diffusion MRI (DMRI) suffers from heavy noise that reduces the accuracy and reliability of the derived diffusion metrics. Existing Deep Learning (DL) methods for DMRI denoising usually rely on training with paired noisy-clean data, which are unavailable in a clinical setting. To this end, we propose a self-supervised DL denoising method, called Spatio-Angular Noise2Noise (SAN2N). We utilize a network trained with paired noisy data that can capture the essential information of underlying clean data for noise reduction. Specifically, SAN2N generates angular neighboring DMRI data based on the geometric structure of q-space sampling points. The resulting data and the original one are then fed to two neighborhood-based x-space sub-samplers to extract 4D similar patches in the spatio-angular domain. Finally, these patches are employed to train our SAN2N with a regularized denoising loss. Extensive experiments on simulated and real datasets demonstrate the superiority of SAN2N over existing DMRI denoising methods.

源语言英语
主期刊名IEEE International Symposium on Biomedical Imaging, ISBI 2024 - Conference Proceedings
出版商IEEE Computer Society
ISBN(电子版)9798350313338
DOI
出版状态已出版 - 2024
活动21st IEEE International Symposium on Biomedical Imaging, ISBI 2024 - Athens, 希腊
期限: 27 5月 202430 5月 2024

出版系列

姓名Proceedings - International Symposium on Biomedical Imaging
ISSN(印刷版)1945-7928
ISSN(电子版)1945-8452

会议

会议21st IEEE International Symposium on Biomedical Imaging, ISBI 2024
国家/地区希腊
Athens
时期27/05/2430/05/24

指纹

探究 'Self-Supervised Denoising of Diffusion MRI Data Via Spatio-Angular Noise2Noise' 的科研主题。它们共同构成独一无二的指纹。

引用此