TY - JOUR
T1 - SEBGLMA
T2 - Semantic Embedded Bipartite Graph Network for Predicting lncRNA-miRNA Associations
AU - Zhao, Zheng Yang
AU - Lin, Jie
AU - Wang, Zhen
AU - Guo, Jian Xin
AU - Zhan, Xin Ke
AU - Huang, Yu An
AU - Shi, Chuan
AU - Huang, Wen Zhun
N1 - Publisher Copyright:
© 2023 Zheng-Yang Zhao et al.
PY - 2023
Y1 - 2023
N2 - Identifying the association between long noncoding RNA (lncRNA) and micro-RNA (miRNA) is of great significance for the treatment of diseases by interfering with the combination of miRNA and messenger RNA (mRNA). Although many efforts and resources have been invested to identify lncRNA-miRNA associations (LMAs), clinical trials are still expensive and laborious. Nevertheless, the experiments also need to consult a large number of side effects. Therefore, novel computer-aided models are urgently needed to predict LMAs. This paper proposed a semantic embedded bipartite graph network for predicting lncRNA-miRNA associations (SEBGLMA), which provided a novel feature extraction method by integrating K-mer segmentation, word2vec, Gaussian interaction profile (GIP), and graph convolution network (GCN). Concretely, the attribute characteristics of RNA sequences are extracted by K-mer segmentation and word2vec modules. Afterward, the adjacent matrix is completed by GIP self-similarity. Then, the attribute characteristics and adjacent matrix are fed into GCN for embedding behavior features. Finally, the features are sent into the rotation forest (RoF) for detecting potential LMAs. The average accuracy, precision, sensitivity, specificity, Matthews correlation coefficient, and F1-Score are 87.09%, 87.66%, 87.03%, 87.84%, 74.18%, and 86.99% on the benchmark data set. For fairly validating the performance of our model, we conducted various comparisons with different classifiers. Furthermore, the case studies of hsa-miR-497-5P and NONHSAT022145.2 are also established. The results of comparisons and case studies further illustrated that our method is anticipated to become a robust and reliable tool for the identification of LMAs.
AB - Identifying the association between long noncoding RNA (lncRNA) and micro-RNA (miRNA) is of great significance for the treatment of diseases by interfering with the combination of miRNA and messenger RNA (mRNA). Although many efforts and resources have been invested to identify lncRNA-miRNA associations (LMAs), clinical trials are still expensive and laborious. Nevertheless, the experiments also need to consult a large number of side effects. Therefore, novel computer-aided models are urgently needed to predict LMAs. This paper proposed a semantic embedded bipartite graph network for predicting lncRNA-miRNA associations (SEBGLMA), which provided a novel feature extraction method by integrating K-mer segmentation, word2vec, Gaussian interaction profile (GIP), and graph convolution network (GCN). Concretely, the attribute characteristics of RNA sequences are extracted by K-mer segmentation and word2vec modules. Afterward, the adjacent matrix is completed by GIP self-similarity. Then, the attribute characteristics and adjacent matrix are fed into GCN for embedding behavior features. Finally, the features are sent into the rotation forest (RoF) for detecting potential LMAs. The average accuracy, precision, sensitivity, specificity, Matthews correlation coefficient, and F1-Score are 87.09%, 87.66%, 87.03%, 87.84%, 74.18%, and 86.99% on the benchmark data set. For fairly validating the performance of our model, we conducted various comparisons with different classifiers. Furthermore, the case studies of hsa-miR-497-5P and NONHSAT022145.2 are also established. The results of comparisons and case studies further illustrated that our method is anticipated to become a robust and reliable tool for the identification of LMAs.
UR - http://www.scopus.com/inward/record.url?scp=85174212174&partnerID=8YFLogxK
U2 - 10.1155/2023/2785436
DO - 10.1155/2023/2785436
M3 - 文章
AN - SCOPUS:85174212174
SN - 0884-8173
VL - 2023
JO - International Journal of Intelligent Systems
JF - International Journal of Intelligent Systems
M1 - 2785436
ER -