Scalable normalized cut with improved spectral rotation

Xiaojun Chen, Feiping Nie, Joshua Zhexue Huang, Min Yang

科研成果: 书/报告/会议事项章节会议稿件同行评审

63 引用 (Scopus)

摘要

Many spectral clustering algorithms have been proposed and successfully applied to many highdimensional applications. However, there are still two problems that need to be solved: 1) existing methods for obtaining the final clustering assignments may deviate from the true discrete solution, and 2) most of these methods usually have very high computational complexity. In this paper, we propose a Scalable Normalized Cut method for clustering of large scale data. In the new method, an efficient method is used to construct a small representation matrix and then clustering is performed on the representation matrix. In the clustering process, an improved spectral rotation method is proposed to obtain the solution of the final clustering assignments. A series of experimental were conducted on 14 benchmark data sets and the experimental results show the superior performance of the new method.

源语言英语
主期刊名26th International Joint Conference on Artificial Intelligence, IJCAI 2017
编辑Carles Sierra
出版商International Joint Conferences on Artificial Intelligence
1518-1524
页数7
ISBN(电子版)9780999241103
DOI
出版状态已出版 - 2017
活动26th International Joint Conference on Artificial Intelligence, IJCAI 2017 - Melbourne, 澳大利亚
期限: 19 8月 201725 8月 2017

出版系列

姓名IJCAI International Joint Conference on Artificial Intelligence
0
ISSN(印刷版)1045-0823

会议

会议26th International Joint Conference on Artificial Intelligence, IJCAI 2017
国家/地区澳大利亚
Melbourne
时期19/08/1725/08/17

指纹

探究 'Scalable normalized cut with improved spectral rotation' 的科研主题。它们共同构成独一无二的指纹。

引用此