Robust rank constrained sparse learning: A graph-based method for clustering

Ran Liu, Mulin Chen, Qi Wang, Xuelong Li

科研成果: 书/报告/会议事项章节会议稿件同行评审

11 引用 (Scopus)

摘要

Graph-based clustering is an advanced clustering techniuqe, which partitions the data according to an affinity graph. However, the graph quality affects the clustering results to a large extent, and it is difficult to construct a graph with high quality, especially for data with noises and outliers. To solve this problem, a robust rank constrained sparse learning method is proposed in this paper. The L2,1-norm objective function of sparse representation is introduced to learn the optimal graph with robustness. To preserve the data structure, the graph is searched within the neighborhood of the initial graph. By incorporating a rank constraint, the learned graph can be directly used as the cluster indicator and the final results is obtained without additional post-processing. Plenty of experiments on real-world data sets have proved the superiority and the robustness of the proposed approach.

源语言英语
主期刊名2020 IEEE International Conference on Acoustics, Speech, and Signal Processing, ICASSP 2020 - Proceedings
出版商Institute of Electrical and Electronics Engineers Inc.
4217-4221
页数5
ISBN(电子版)9781509066315
DOI
出版状态已出版 - 5月 2020
活动2020 IEEE International Conference on Acoustics, Speech, and Signal Processing, ICASSP 2020 - Barcelona, 西班牙
期限: 4 5月 20208 5月 2020

出版系列

姓名ICASSP, IEEE International Conference on Acoustics, Speech and Signal Processing - Proceedings
2020-May
ISSN(印刷版)1520-6149

会议

会议2020 IEEE International Conference on Acoustics, Speech, and Signal Processing, ICASSP 2020
国家/地区西班牙
Barcelona
时期4/05/208/05/20

指纹

探究 'Robust rank constrained sparse learning: A graph-based method for clustering' 的科研主题。它们共同构成独一无二的指纹。

引用此