Robust Graph Based Social Recommendation Through Contrastive Multi-View Learning

Fei Xiong, Tao Zhang, Shirui Pan, Guixun Luo, Liang Wang

科研成果: 书/报告/会议事项章节会议稿件同行评审

摘要

Social recommendation leverages the social connections between users to mitigate the issue of data sparsity and enhance recommendation quality. Although existing related works show their effectiveness, there remain two critical questions: i) The patterns of preference interactions among users are varied and heterogeneous. Current models struggle to accurately capture preference shifts from user interactions in noisy social environments. ii) Existing methods handle the integration of auxiliary information coarsely, potentially introducing noise and leading to biases in user preferences. To address the limitations above, we introduce a novel framework named Robust Graph Based Social Recommendation Through Contrastive Multi-View Learning (RGCML). This framework leverages denoised social relations and global intents as dual auxiliary information sources to provide comprehensive characterization of users. Firstly, RGCML employs the concept of opinion dynamics to simulate how user preferences evolve due to noisy social relations. Then, it utilizes a specifically designed information fusion module to extract critical contextual information from multiple semantic perspectives, thereby achieving personalized information fusion. Finally, it adopts the designed global-local contrastive learning paradigm that untangles and discriminates user preferences from global intents, further addressing the noise problem and enhancing the quality of user representations. Extensive experiments conducted on three real-world datasets demonstrate the superior performance of RGCML compared to several state-of-the-art (SOTA) baselines.

源语言英语
主期刊名Special Track on AI Alignment
编辑Toby Walsh, Julie Shah, Zico Kolter
出版商Association for the Advancement of Artificial Intelligence
12890-12898
页数9
版本12
ISBN(电子版)157735897X, 157735897X, 157735897X, 157735897X, 157735897X, 157735897X, 157735897X, 157735897X, 157735897X, 157735897X, 157735897X, 157735897X, 157735897X, 157735897X, 157735897X, 157735897X, 157735897X, 157735897X, 157735897X, 157735897X, 157735897X, 157735897X, 157735897X, 157735897X, 157735897X, 157735897X, 157735897X, 157735897X, 9781577358978, 9781577358978, 9781577358978, 9781577358978, 9781577358978, 9781577358978, 9781577358978, 9781577358978, 9781577358978, 9781577358978, 9781577358978, 9781577358978, 9781577358978, 9781577358978, 9781577358978, 9781577358978, 9781577358978, 9781577358978, 9781577358978, 9781577358978, 9781577358978, 9781577358978, 9781577358978, 9781577358978, 9781577358978, 9781577358978, 9781577358978, 9781577358978
DOI
出版状态已出版 - 11 4月 2025
活动39th Annual AAAI Conference on Artificial Intelligence, AAAI 2025 - Philadelphia, 美国
期限: 25 2月 20254 3月 2025

出版系列

姓名Proceedings of the AAAI Conference on Artificial Intelligence
编号12
39
ISSN(印刷版)2159-5399
ISSN(电子版)2374-3468

会议

会议39th Annual AAAI Conference on Artificial Intelligence, AAAI 2025
国家/地区美国
Philadelphia
时期25/02/254/03/25

指纹

探究 'Robust Graph Based Social Recommendation Through Contrastive Multi-View Learning' 的科研主题。它们共同构成独一无二的指纹。

引用此