RGB-D Saliency Detection via Cascaded Mutual Information Minimization

Jing Zhang, Deng Ping Fan, Yuchao Dai, Xin Yu, Yiran Zhong, Nick Barnes, Ling Shao

科研成果: 书/报告/会议事项章节会议稿件同行评审

99 引用 (Scopus)

摘要

Existing RGB-D saliency detection models do not explicitly encourage RGB and depth to achieve effective multi-modal learning. In this paper, we introduce a novel multistage cascaded learning framework via mutual information minimization to explicitly model the multi-modal information between RGB image and depth data. Specifically, we first map the feature of each mode to a lower dimensional feature vector, and adopt mutual information minimization as a regularizer to reduce the redundancy between appearance features from RGB and geometric features from depth. We then perform multi-stage cascaded learning to impose the mutual information minimization constraint at every stage of the network. Extensive experiments on benchmark RGB-D saliency datasets illustrate the effectiveness of our framework. Further, to prosper the development of this field, we contribute the largest (7× larger than NJU2K) COME15K dataset, which contains 15,625 image pairs with high quality polygon-/scribble-/object-/instance-/rank-level annotations. Based on these rich labels, we additionally construct four new benchmarks with strong baselines and observe some interesting phenomena, which can motivate future model design. Source code and dataset are available at https://github.com/JingZhang617/cascaded_rgbd_sod.

源语言英语
主期刊名Proceedings - 2021 IEEE/CVF International Conference on Computer Vision, ICCV 2021
出版商Institute of Electrical and Electronics Engineers Inc.
4318-4327
页数10
ISBN(电子版)9781665428125
DOI
出版状态已出版 - 2021
活动18th IEEE/CVF International Conference on Computer Vision, ICCV 2021 - Virtual, Online, 加拿大
期限: 11 10月 202117 10月 2021

出版系列

姓名Proceedings of the IEEE International Conference on Computer Vision
ISSN(印刷版)1550-5499

会议

会议18th IEEE/CVF International Conference on Computer Vision, ICCV 2021
国家/地区加拿大
Virtual, Online
时期11/10/2117/10/21

指纹

探究 'RGB-D Saliency Detection via Cascaded Mutual Information Minimization' 的科研主题。它们共同构成独一无二的指纹。

引用此