Revealing Anatomical Structures in PET to Generate CT for Attenuation Correction

Yongsheng Pan, Feihong Liu, Caiwen Jiang, Jiawei Huang, Yong Xia, Dinggang Shen

科研成果: 书/报告/会议事项章节会议稿件同行评审

摘要

Positron emission tomography (PET) is a molecular imaging technique relying on a step, namely attenuation correction (AC), to correct radionuclide distribution based on pre-determined attenuation coefficients. Conventional AC techniques require additionally-acquired computed tomography (CT) or magnetic resonance (MR) images to calculate attenuation coefficients, which increases imaging expenses, time costs, or radiation hazards to patients, especially for whole-body scanners. In this paper, considering technological advances in acquiring more anatomical information in raw PET images, we propose to conduct attenuation correction to PET by itself. To achieve this, we design a deep learning based framework, namely anatomical skeleton-enhanced generation (ASEG), to generate pseudo CT images from non-attenuation corrected PET images for attenuation correction. Specifically, ASEG contains two sequential modules, i.e., a skeleton prediction module and a tissue rendering module. The former module first delineates anatomical skeleton and the latter module then renders tissue details. Both modules are trained collaboratively with specific anatomical-consistency constraint to guarantee tissue generation fidelity. Experiments on four public PET/CT datasets demonstrate that our ASEG outperforms existing methods by achieving better consistency of anatomical structures in generated CT images, which are further employed to conduct PET attenuation correction with better similarity to real ones. This work verifies the feasibility of generating pseudo CT from raw PET for attenuation correction without acquising additional images. The associated implementation is available at https://github.com/YongshengPan/ASEG-for-PET2CT.

源语言英语
主期刊名Medical Image Computing and Computer Assisted Intervention – MICCAI 2023 - 26th International Conference, Proceedings
编辑Hayit Greenspan, Hayit Greenspan, Anant Madabhushi, Parvin Mousavi, Septimiu Salcudean, James Duncan, Tanveer Syeda-Mahmood, Russell Taylor
出版商Springer Science and Business Media Deutschland GmbH
24-33
页数10
ISBN(印刷版)9783031439988
DOI
出版状态已出版 - 2023
活动26th International Conference on Medical Image Computing and Computer-Assisted Intervention, MICCAI 2023 - Vancouver, 加拿大
期限: 8 10月 202312 10月 2023

出版系列

姓名Lecture Notes in Computer Science
14229 LNCS
ISSN(印刷版)0302-9743
ISSN(电子版)1611-3349

会议

会议26th International Conference on Medical Image Computing and Computer-Assisted Intervention, MICCAI 2023
国家/地区加拿大
Vancouver
时期8/10/2312/10/23

指纹

探究 'Revealing Anatomical Structures in PET to Generate CT for Attenuation Correction' 的科研主题。它们共同构成独一无二的指纹。

引用此