TY - JOUR
T1 - Responses of soil enzyme activity and microbial community compositions to nitrogen addition in bulk and microaggregate soil in the temperate steppe of Inner Mongolia
AU - Shi, Yao
AU - Sheng, Lianxi
AU - Wang, Zhongqiang
AU - Zhang, Xinyu
AU - He, Nianpeng
AU - Yu, Qiang
N1 - Publisher Copyright:
© 2016, Pleiades Publishing, Ltd.
PY - 2016/10/1
Y1 - 2016/10/1
N2 - In order to explore the responses of soil enzyme activities and microbial community compositions to long-term nitrogen (N) addition in both bulk soil and microaggregate of chestnut soil, we conducted a 7-year urea addition experiment with N treatments at 6 levels (0, 56, 112, 224, 392 and 560 kg N ha–1 yr–1) in a temperate steppe of Inner Mongolia in China. Soil properties and the activities of four enzymes involved in carbon (C), nitrogen (N) and phosphorus (P) cycling were measured in both bulk soil and microaggregate, and phospholipid fatty acids (PLFAs) were measured in bulk soil. The results indicated that: 1) in bulk soil, N addition significantly decreased β-1,4-glucosidase (BG) and leucine aminopeptidase (LAP) activities at the treatment amounts of 224, 392 and 560 kg N ha–1 yr–1, and obviously suppressed β-1,4-N-acetylglucosaminidase (NAG) activity at the treatment amount of 560 kg N ha–1 yr–1. N addition enhanced total PLFAs (totPLFAs) and bacterial PLFAs (bacPLFAs) at the treatment amounts of 392 and 560 kg N ha–1 yr–1, respectively, but fungal PLFAs showed no response to N addition. The activities of BG, NAG and LAP were positively correlated with soil pH, but negatively correlated with the concentration of NH 4 +-N; 2) in microaggregate (53–250 μm), the activities of BG, NAG and AP showed no response to increased addition of N, but the significantly decreased LAP activity was observed at the treatment amount of 392 kg N ha–1 yr–1. These results suggested that enzyme activities were more sensitive to N addition than PLFA biomarkers in soil, and LAP activity in microaggregate may be a good indicator for evaluating N cycle response to long-term N addition.
AB - In order to explore the responses of soil enzyme activities and microbial community compositions to long-term nitrogen (N) addition in both bulk soil and microaggregate of chestnut soil, we conducted a 7-year urea addition experiment with N treatments at 6 levels (0, 56, 112, 224, 392 and 560 kg N ha–1 yr–1) in a temperate steppe of Inner Mongolia in China. Soil properties and the activities of four enzymes involved in carbon (C), nitrogen (N) and phosphorus (P) cycling were measured in both bulk soil and microaggregate, and phospholipid fatty acids (PLFAs) were measured in bulk soil. The results indicated that: 1) in bulk soil, N addition significantly decreased β-1,4-glucosidase (BG) and leucine aminopeptidase (LAP) activities at the treatment amounts of 224, 392 and 560 kg N ha–1 yr–1, and obviously suppressed β-1,4-N-acetylglucosaminidase (NAG) activity at the treatment amount of 560 kg N ha–1 yr–1. N addition enhanced total PLFAs (totPLFAs) and bacterial PLFAs (bacPLFAs) at the treatment amounts of 392 and 560 kg N ha–1 yr–1, respectively, but fungal PLFAs showed no response to N addition. The activities of BG, NAG and LAP were positively correlated with soil pH, but negatively correlated with the concentration of NH 4 +-N; 2) in microaggregate (53–250 μm), the activities of BG, NAG and AP showed no response to increased addition of N, but the significantly decreased LAP activity was observed at the treatment amount of 392 kg N ha–1 yr–1. These results suggested that enzyme activities were more sensitive to N addition than PLFA biomarkers in soil, and LAP activity in microaggregate may be a good indicator for evaluating N cycle response to long-term N addition.
KW - enzyme activity
KW - long-term N addition
KW - microaggregate
KW - PLFA
KW - soil
KW - temperate steppe
UR - http://www.scopus.com/inward/record.url?scp=84990990082&partnerID=8YFLogxK
U2 - 10.1134/S1064229316100124
DO - 10.1134/S1064229316100124
M3 - 文章
AN - SCOPUS:84990990082
SN - 1064-2293
VL - 49
SP - 1149
EP - 1160
JO - Eurasian Soil Science
JF - Eurasian Soil Science
IS - 10
ER -