Resolution Enhancement of Diffusion-Weighted Images via Unified x-q Space Learning

Jiquan Ma, Siqi Wang, Runlin Zhang, Jian Cao, Geng Chen

科研成果: 书/报告/会议事项章节会议稿件同行评审

摘要

Low resolution is a major issue restricting the application of Diffusion-Weighted Imaging (DWI) in neuroscience research and clinical routine. Super-resolution provides a viable solution to enhance the resolution of DWIs at the post-acquisition stage. Existing methods for DWI super-resolution primarily rely on the information in the x-space (i.e., spatial domain), but fail in exploiting the angular relationships in q-space (i.e., diffusion wavevector domain). In this work, we propose a Unified X-Q space Learning (UXQL) framework that makes full use of x-space and q-space information. Building upon a message-passing scheme, we employ 3D residual convolutional blocks to learn correlations in x-space, while utilizing a spatial attention mechanism to achieve effective q-space learning. Additionally, the T1-w MR image is incorporated into our framework for additional information to assist DWI super-resolution. We conduct experiments on the DWIs from the widely-used Human Connectome Project (HCP). Experimental results demonstrate the effectiveness of UXQL in improving DWI super-resolution, both quantitatively and qualitatively.

源语言英语
主期刊名Proceedings - 2024 IEEE International Conference on Bioinformatics and Biomedicine, BIBM 2024
编辑Mario Cannataro, Huiru Zheng, Lin Gao, Jianlin Cheng, Joao Luis de Miranda, Ester Zumpano, Xiaohua Hu, Young-Rae Cho, Taesung Park
出版商Institute of Electrical and Electronics Engineers Inc.
4995-5000
页数6
ISBN(电子版)9798350386226
DOI
出版状态已出版 - 2024
活动2024 IEEE International Conference on Bioinformatics and Biomedicine, BIBM 2024 - Lisbon, 葡萄牙
期限: 3 12月 20246 12月 2024

出版系列

姓名Proceedings - 2024 IEEE International Conference on Bioinformatics and Biomedicine, BIBM 2024

会议

会议2024 IEEE International Conference on Bioinformatics and Biomedicine, BIBM 2024
国家/地区葡萄牙
Lisbon
时期3/12/246/12/24

指纹

探究 'Resolution Enhancement of Diffusion-Weighted Images via Unified x-q Space Learning' 的科研主题。它们共同构成独一无二的指纹。

引用此