Research on n - γ Identification of Scintillation Neutron Detector Using PCA-CNN

Zihang Lin, Rongrong Guo, Zhuochen Cai, Xianggang Zhang, Shixuan Guo, Yijun Cai, Huixiang Huang, Tao Wang

科研成果: 书/报告/会议事项章节会议稿件同行评审

摘要

The generation of neutrons always comes with accompanying gamma rays. Therefore, it is necessary to eliminate the influence of gamma rays in neutron measurement and discriminate n-γ rays. The Cs2LiLaBr6 (CLLB) crystal is capable of detecting both neutrons and gamma rays and has excellent scintillation performance. To enhance its discriminating capabilities, this study suggests combining CLLB crystals with a convolutional neural network (CNN) and principal component analysis (PCA). The CNN is used to extract features of neutron and gamma rays, and then the PCA method automatically selects the fewest principal components with at least 95% variance, enabling effective n-γ discriminating. Experimental results demonstrate that the PCA-CNN model proposed in this study outperforms the CNN alone, achieving a discriminating accuracy of 99.07%.

源语言英语
主期刊名International Conference on Optoelectronic Materials and Devices, ICOMD 2024
编辑Tingchao He, Ching Yern Chee
出版商SPIE
ISBN(电子版)9781510689039
DOI
出版状态已出版 - 2025
活动2024 International Conference on Optoelectronic Materials and Devices, ICOMD 2024 - Chongqing, 中国
期限: 22 11月 202424 11月 2024

出版系列

姓名Proceedings of SPIE - The International Society for Optical Engineering
13549
ISSN(印刷版)0277-786X
ISSN(电子版)1996-756X

会议

会议2024 International Conference on Optoelectronic Materials and Devices, ICOMD 2024
国家/地区中国
Chongqing
时期22/11/2424/11/24

指纹

探究 'Research on n - γ Identification of Scintillation Neutron Detector Using PCA-CNN' 的科研主题。它们共同构成独一无二的指纹。

引用此