TY - JOUR
T1 - Research on Creep Deformation of Dissimilar FSWed T-Joints Under Different Ultrasonic Vibration Modes
T2 - Experiment, Constitutive Model, and Simulation Verification
AU - Ye, Ti
AU - Han, Yanjie
AU - Zuo, Duquan
AU - Fu, Haoran
AU - Feng, Shilin
AU - Gao, Chong
AU - Li, Wenya
N1 - Publisher Copyright:
© 2025 by the authors.
PY - 2025/5
Y1 - 2025/5
N2 - This article presents experimental and numerical studies on the creep deformation of 7055-T6 Al and 2197-T8 Al-Li T-joints. Firstly, the optimal process parameters for creep tensile tests (CATs) are determined to be 155 °C, 130 MPa, and 8 h. Based on this, different modes of ultrasonic vibration are introduced. It is found that under the same amplitude, the creep limit of intermittent vibration is 64.7‰ to 97.2‰ higher than that of continuous vibration, and the tensile strength of the former specimens is significantly better than that of the latter. Further analysis reveals that during long-duration or high-amplitude vibrations, the joint material exhibits hardening effects, while short-duration, low-amplitude intermittent vibrations result in softening effects. When the amplitude is 12.53 μm, the material exhibits optimal comprehensive mechanical properties, with yield strengths, tensile strengths, and elongations of 402.1 MPa, 429.3 MPa, and 7.9%, respectively. Additionally, based on the mechanisms of superposition and acoustic softening effects, an improved creep aging constitutive model is established, which incorporates the creep process, stress superposition, and ultrasonic softening changes and is applied in ABAQUS. It is found that at an amplitude of 12.53 μm, the residual stress in the joint is more thoroughly eliminated and distributed more evenly, measuring 97.35 MPa. Moreover, the creep strain calculated using the above model in a finite element analysis shows a high degree of agreement with the experimental results, indicating that the proposed model can more accurately predict the creep deformation behavior of FSWed T-joints during the CAT process.
AB - This article presents experimental and numerical studies on the creep deformation of 7055-T6 Al and 2197-T8 Al-Li T-joints. Firstly, the optimal process parameters for creep tensile tests (CATs) are determined to be 155 °C, 130 MPa, and 8 h. Based on this, different modes of ultrasonic vibration are introduced. It is found that under the same amplitude, the creep limit of intermittent vibration is 64.7‰ to 97.2‰ higher than that of continuous vibration, and the tensile strength of the former specimens is significantly better than that of the latter. Further analysis reveals that during long-duration or high-amplitude vibrations, the joint material exhibits hardening effects, while short-duration, low-amplitude intermittent vibrations result in softening effects. When the amplitude is 12.53 μm, the material exhibits optimal comprehensive mechanical properties, with yield strengths, tensile strengths, and elongations of 402.1 MPa, 429.3 MPa, and 7.9%, respectively. Additionally, based on the mechanisms of superposition and acoustic softening effects, an improved creep aging constitutive model is established, which incorporates the creep process, stress superposition, and ultrasonic softening changes and is applied in ABAQUS. It is found that at an amplitude of 12.53 μm, the residual stress in the joint is more thoroughly eliminated and distributed more evenly, measuring 97.35 MPa. Moreover, the creep strain calculated using the above model in a finite element analysis shows a high degree of agreement with the experimental results, indicating that the proposed model can more accurately predict the creep deformation behavior of FSWed T-joints during the CAT process.
KW - constitutive model
KW - creep deformation
KW - FSW
KW - T-joints
KW - ultrasonic vibration
UR - http://www.scopus.com/inward/record.url?scp=105006676910&partnerID=8YFLogxK
U2 - 10.3390/ma18102275
DO - 10.3390/ma18102275
M3 - 文章
AN - SCOPUS:105006676910
SN - 1996-1944
VL - 18
JO - Materials
JF - Materials
IS - 10
M1 - 2275
ER -