TY - JOUR
T1 - Repair of ordinary concrete using basalt fiber reinforced geopolymer
T2 - High temperature resistance and micro structure evolution of adhesive interface
AU - Wang, Ke
AU - Lin, Bozhong
AU - Wu, Borui
AU - Yao, Yao
N1 - Publisher Copyright:
© 2024 Elsevier Ltd
PY - 2024/11/15
Y1 - 2024/11/15
N2 - Good bonding properties in the interfacial transition zone (ITZ) between the substrate and the repair material are critical to the success of the repair, and a good repair material can act as a protective layer to reduce the impact of fire on the structure. In this paper, Ordinary concrete (OP), geopolymer mortar (GP), and basalt fiber reinforced geopolymer mortar (GPb) were poured as the three repair materials on the roughened surface of the old substrate. The bonded specimens were exposed to temperatures of 23 °C, 200 °C, 400 °C, 600 °C and 800 °C for 1 h. The interfacial bond strength of the bonded specimens was tested by slant shear test, and the physical phase change of the repair material and the microstructure of the ITZ were analyzed by microscopic test. The results showed that the mechanical properties and high temperature resistance of ITZ were best when the old substrate interfaces were grinded and grooved and GPb was used as the repair material. Compared with S-OP, the bond strength of S-GPb was 26.92 %, 27.43 %, 46.50 %, 44.26 %, and 97.02 % higher at different temperatures. The increase in interfacial bond strength can be attributed to three mechanisms: (1) Mechanical interlocking with the old substrate with a rough surface. (2) The increase in temperature accelerates the volcanic ash reaction, and the formation of hydration products further fills the voids at the ITZ, maintaining the strength and compactness of the ITZ. (3) The addition of basalt fibers can form an anchoring effect at the interface, reducing the risk of interfacial spalling and cracking caused by material shrinkage in the ITZ.
AB - Good bonding properties in the interfacial transition zone (ITZ) between the substrate and the repair material are critical to the success of the repair, and a good repair material can act as a protective layer to reduce the impact of fire on the structure. In this paper, Ordinary concrete (OP), geopolymer mortar (GP), and basalt fiber reinforced geopolymer mortar (GPb) were poured as the three repair materials on the roughened surface of the old substrate. The bonded specimens were exposed to temperatures of 23 °C, 200 °C, 400 °C, 600 °C and 800 °C for 1 h. The interfacial bond strength of the bonded specimens was tested by slant shear test, and the physical phase change of the repair material and the microstructure of the ITZ were analyzed by microscopic test. The results showed that the mechanical properties and high temperature resistance of ITZ were best when the old substrate interfaces were grinded and grooved and GPb was used as the repair material. Compared with S-OP, the bond strength of S-GPb was 26.92 %, 27.43 %, 46.50 %, 44.26 %, and 97.02 % higher at different temperatures. The increase in interfacial bond strength can be attributed to three mechanisms: (1) Mechanical interlocking with the old substrate with a rough surface. (2) The increase in temperature accelerates the volcanic ash reaction, and the formation of hydration products further fills the voids at the ITZ, maintaining the strength and compactness of the ITZ. (3) The addition of basalt fibers can form an anchoring effect at the interface, reducing the risk of interfacial spalling and cracking caused by material shrinkage in the ITZ.
KW - Basalt fiber reinforced geopolymer
KW - Bonding mechanism
KW - High temperature
KW - Interfacial transition zone
KW - Repair materials
UR - http://www.scopus.com/inward/record.url?scp=85203554631&partnerID=8YFLogxK
U2 - 10.1016/j.jobe.2024.110712
DO - 10.1016/j.jobe.2024.110712
M3 - 文章
AN - SCOPUS:85203554631
SN - 2352-7102
VL - 97
JO - Journal of Building Engineering
JF - Journal of Building Engineering
M1 - 110712
ER -