TY - JOUR
T1 - Regulating the phase composition and microstructure of Fe3Si/SiC nanofiber composites to enhance electromagnetic wave absorption
AU - Xiang, Dandan
AU - He, Qinchuan
AU - Lan, Di
AU - Wang, Yiqun
AU - Yin, Xuemin
N1 - Publisher Copyright:
© 2024 Elsevier B.V.
PY - 2024/10/15
Y1 - 2024/10/15
N2 - The rational introduction of multi-components to fabricate electromagnetic wave absorbing (EMA) materials with synergistic conductive/dielectric/magnetic losses promises lightweighting and excellent EMA performance, but it remains a challenge. In this work, multicomponent Fe3Si/SiC nanofibre composites with network structure were constructed by electrostatic spinning method and in-situ carbothermal reduction strategy. Design of microstructures and multicomponent modulation by controlling the carbothermal reduction temperature. As a result, the presence of a large number of non-homogeneous interfaces, three-dimensional (3D) conductive network structures and defect structures in Fe3Si/SiC nanofibre composites induces a combination of multiple loss mechanisms that significantly improve the EMA performance. When the filling amount of Fe3Si/SiC in the paraffin transmission matrix is 20 wt%, the maximum effective absorption bandwidth (EABmax) of the fabricated material reaches 5.84 GHz with a thin thickness of 2.02 mm. Moreover, the minimum reflection loss (RLmin) value at 10.96 GHz is as low as −67.57 dB. Meanwhile, the radar cross-section (RCS) simulation verifies that the F-4 peak RCS is reduced to −30.37 dB in the range of −60°<θ < 60°. It indicates that the Fe3Si/SiC nanofiber composites have a good radar-wave dissipation capability in practical applications. In summary, the comprehensive performance of lightweight multicomponent Fe3Si/SiC nanofiber composites can meet the new application requirements and is expected to become an emerging multifunctional wave-absorbing material suitable for harsh environments.
AB - The rational introduction of multi-components to fabricate electromagnetic wave absorbing (EMA) materials with synergistic conductive/dielectric/magnetic losses promises lightweighting and excellent EMA performance, but it remains a challenge. In this work, multicomponent Fe3Si/SiC nanofibre composites with network structure were constructed by electrostatic spinning method and in-situ carbothermal reduction strategy. Design of microstructures and multicomponent modulation by controlling the carbothermal reduction temperature. As a result, the presence of a large number of non-homogeneous interfaces, three-dimensional (3D) conductive network structures and defect structures in Fe3Si/SiC nanofibre composites induces a combination of multiple loss mechanisms that significantly improve the EMA performance. When the filling amount of Fe3Si/SiC in the paraffin transmission matrix is 20 wt%, the maximum effective absorption bandwidth (EABmax) of the fabricated material reaches 5.84 GHz with a thin thickness of 2.02 mm. Moreover, the minimum reflection loss (RLmin) value at 10.96 GHz is as low as −67.57 dB. Meanwhile, the radar cross-section (RCS) simulation verifies that the F-4 peak RCS is reduced to −30.37 dB in the range of −60°<θ < 60°. It indicates that the Fe3Si/SiC nanofiber composites have a good radar-wave dissipation capability in practical applications. In summary, the comprehensive performance of lightweight multicomponent Fe3Si/SiC nanofiber composites can meet the new application requirements and is expected to become an emerging multifunctional wave-absorbing material suitable for harsh environments.
KW - Carbothermal reduction
KW - Electromagnetic wave absorption
KW - FeSi/SiC nanofibre composites
KW - Phase composition and microstructure
UR - http://www.scopus.com/inward/record.url?scp=85202997298&partnerID=8YFLogxK
U2 - 10.1016/j.cej.2024.155406
DO - 10.1016/j.cej.2024.155406
M3 - 文章
AN - SCOPUS:85202997298
SN - 1385-8947
VL - 498
JO - Chemical Engineering Journal
JF - Chemical Engineering Journal
M1 - 155406
ER -