TY - JOUR
T1 - Rate dependent flexural behavior of Aluminosilicate glass
T2 - An in-plane and out-of-plane synchronous damage propagation
AU - Raza, Muhammad Aamir
AU - Wang, Zhen
AU - Pei, Penghao
AU - Atif, Muhammad
AU - Sheikh, Muhammad Zakir
AU - Li, Yuan
AU - Tao, Suo
N1 - Publisher Copyright:
© 2022
PY - 2022/9/1
Y1 - 2022/9/1
N2 - Quasi-static and dynamic three-point bending tests were conducted to investigate the effect of loading rate on flexural strength and fracture mechanism of two types of Aluminosilicate glass specimens, i.e., annealed and chemically strengthened (CS). Dynamic tests were performed on Electromagnetic Split Hopkinson Pressure Bar (ESHPB), and a hybrid experimental-numerical methodology was adopted for analyzing results. It was established that the flexural strength of both glass types is rate sensitive. Synchronous in-plane and out-of-plane reprography revealed that cracks propagate much faster along in-plane than out-of-plane direction. The Crack system adheres to an organized “V” shape pattern, and the locus of crack initiation is also found different for both types of glasses. For annealed and CS glass, crack initiated from the dominant flaws of the tensile surface and the tensile edge, respectively. Fractography was performed to explain the characteristic features of the crack evolution process from a microscopic to a macroscopic perspective.
AB - Quasi-static and dynamic three-point bending tests were conducted to investigate the effect of loading rate on flexural strength and fracture mechanism of two types of Aluminosilicate glass specimens, i.e., annealed and chemically strengthened (CS). Dynamic tests were performed on Electromagnetic Split Hopkinson Pressure Bar (ESHPB), and a hybrid experimental-numerical methodology was adopted for analyzing results. It was established that the flexural strength of both glass types is rate sensitive. Synchronous in-plane and out-of-plane reprography revealed that cracks propagate much faster along in-plane than out-of-plane direction. The Crack system adheres to an organized “V” shape pattern, and the locus of crack initiation is also found different for both types of glasses. For annealed and CS glass, crack initiated from the dominant flaws of the tensile surface and the tensile edge, respectively. Fractography was performed to explain the characteristic features of the crack evolution process from a microscopic to a macroscopic perspective.
KW - Aluminosilicate glass
KW - Chemically strengthened glass
KW - Damage mechanism
KW - ESHPB
KW - Rate dependent flexural behavior
UR - http://www.scopus.com/inward/record.url?scp=85131803605&partnerID=8YFLogxK
U2 - 10.1016/j.jnoncrysol.2022.121747
DO - 10.1016/j.jnoncrysol.2022.121747
M3 - 文章
AN - SCOPUS:85131803605
SN - 0022-3093
VL - 591
JO - Journal of Non-Crystalline Solids
JF - Journal of Non-Crystalline Solids
M1 - 121747
ER -