Rapid Eddy Current Braking of Space Tumbling Target Based on Model Predictive Control

Xiyao Liu, Panfeng Huang, Bingxiao Huang

科研成果: 书/报告/会议事项章节会议稿件同行评审

摘要

Due to the increasing risk of space tumbling targets for spacecraft and astronauts, de-tumbling technology of spacecraft become more and more important and various de-tumbling methods have been proposed. This paper mainly studies the fast and safe de-tumbling of space tumbling target. Considering that the required time of de-tumbling via previous methods is too long, this paper first takes the maximum de-tumbling torque as the objective function and solves the optimal trajectory in real time. Then, the MPC algorithm is used to track the trajectory under the constraints of the safe area to ensure a fast and safe de-tumbling. The numerical simulation of large failure satellite verify that the method proposed in this paper is very effective on reducing de-tumbling time. However, it consumes huge control power. The controller will continue to be optimized in the future to reduce the consumption of control power while ensuring rapid de-tumbling.

源语言英语
主期刊名Advances in Guidance, Navigation and Control - Proceedings of 2020 International Conference on Guidance, Navigation and Control, ICGNC 2020
编辑Liang Yan, Haibin Duan, Xiang Yu
出版商Springer Science and Business Media Deutschland GmbH
3007-3017
页数11
ISBN(印刷版)9789811581540
DOI
出版状态已出版 - 2022
活动International Conference on Guidance, Navigation and Control, ICGNC 2020 - Tianjin, 中国
期限: 23 10月 202025 10月 2020

出版系列

姓名Lecture Notes in Electrical Engineering
644 LNEE
ISSN(印刷版)1876-1100
ISSN(电子版)1876-1119

会议

会议International Conference on Guidance, Navigation and Control, ICGNC 2020
国家/地区中国
Tianjin
时期23/10/2025/10/20

指纹

探究 'Rapid Eddy Current Braking of Space Tumbling Target Based on Model Predictive Control' 的科研主题。它们共同构成独一无二的指纹。

引用此