Rainbow cliques in edge-colored graphs

Chuandong Xu, Xiaoxue Hu, Weifan Wang, Shenggui Zhang

科研成果: 期刊稿件文章同行评审

14 引用 (Scopus)

摘要

An edge-colored graph H is called rainbow if e(H)=c(H), where e(H) and c(H) are the number of edges of H and colors used in H, respectively. For two graphs G and H, the rainbow number rb(G, H) is the minimum number of colors k such that for every edge-coloring of G using k colors, G contains a rainbow H. In this paper we prove that for an edge-colored graph G on n vertices with n≥k≥4, if e(G)+c(G)≥(n2)+tn,k-2+2, then G contains a rainbow clique Kk, where tn,k-2 is the Turán number. This implies the known result rb(Kn, Kk)=tn,k-2+2, and moreover, rb(G,Kk)≤e(G)+rb(Kn,Kk) for n≥k≥4.

源语言英语
页(从-至)193-200
页数8
期刊European Journal of Combinatorics
54
DOI
出版状态已出版 - 1 5月 2016

指纹

探究 'Rainbow cliques in edge-colored graphs' 的科研主题。它们共同构成独一无二的指纹。

引用此