Pursuit-Evasion Games for Multi-agent Based on Reinforcement Learning with Obstacles

Penglin Hu, Yaning Guo, Jinwen Hu, Quan Pan

科研成果: 书/报告/会议事项章节会议稿件同行评审

摘要

Considering the problem of external interference and obstacle avoidance in multi-agent pursuit-evasion games, the deep deterministic policy gradient algorithm is used to train agents in continuous space. Obstacle and collision avoidance are realized by designing detailed reward function. Interference data are added to the original observations, and adversarial learning algorithm is used to eliminate the influence of interference and other agents. The evaluation function based on heading angle and relative distance is used to evalue evader’s escape strategy, which improves the robustness of the proposed algorithm. Simulation experiments are designed to verify the effectiveness of the algorithm.

源语言英语
主期刊名Proceedings of 2022 International Conference on Autonomous Unmanned Systems, ICAUS 2022
编辑Wenxing Fu, Mancang Gu, Yifeng Niu
出版商Springer Science and Business Media Deutschland GmbH
1015-1024
页数10
ISBN(印刷版)9789819904785
DOI
出版状态已出版 - 2023
活动International Conference on Autonomous Unmanned Systems, ICAUS 2022 - Xi'an, 中国
期限: 23 9月 202225 9月 2022

出版系列

姓名Lecture Notes in Electrical Engineering
1010 LNEE
ISSN(印刷版)1876-1100
ISSN(电子版)1876-1119

会议

会议International Conference on Autonomous Unmanned Systems, ICAUS 2022
国家/地区中国
Xi'an
时期23/09/2225/09/22

指纹

探究 'Pursuit-Evasion Games for Multi-agent Based on Reinforcement Learning with Obstacles' 的科研主题。它们共同构成独一无二的指纹。

引用此