PSNet: A Deep Learning Model-Based Single-Shot Digital Phase-Shifting Algorithm

Zhaoshuai Qi, Xiaojun Liu, Jingqi Pang, Yifeng Hao, Rui Hu, Yanning Zhang

科研成果: 期刊稿件文章同行评审

3 引用 (Scopus)

摘要

In contrast to traditional phase-shifting (PS) algorithms, which rely on capturing multiple fringe patterns with different phase shifts, digital PS algorithms provide a competitive alternative to relative phase retrieval, which achieves improved efficiency since only one pattern is required for multiple PS pattern generation. Recent deep learning-based algorithms further enhance the retrieved phase quality of complex surfaces with discontinuity, achieving state-of-the-art performance. However, since much attention has been paid to understanding image intensity mapping, such as supervision via fringe intensity loss, global temporal dependency between patterns is often ignored, which leaves room for further improvement. In this paper, we propose a deep learning model-based digital PS algorithm, termed PSNet. A loss combining both local and global temporal information among the generated fringe patterns has been constructed, which forces the model to learn inter-frame dependency between adjacent patterns, and hence leads to the improved accuracy of PS pattern generation and the associated phase retrieval. Both simulation and real-world experimental results have demonstrated the efficacy and improvement of the proposed algorithm against the state of the art.

源语言英语
文章编号8305
期刊Sensors
23
19
DOI
出版状态已出版 - 10月 2023

指纹

探究 'PSNet: A Deep Learning Model-Based Single-Shot Digital Phase-Shifting Algorithm' 的科研主题。它们共同构成独一无二的指纹。

引用此