TY - GEN
T1 - Pseudo-loss Confidence Metric for Semi-supervised Few-shot Learning
AU - Huang, Kai
AU - Geng, Jie
AU - Jiang, Wen
AU - Deng, Xinyang
AU - Xu, Zhe
N1 - Publisher Copyright:
© 2021 IEEE
PY - 2021
Y1 - 2021
N2 - Semi-supervised few-shot learning is developed to train a classifier that can adapt to new tasks with limited labeled data and a fixed quantity of unlabeled data. Most semi-supervised few-shot learning methods select pseudo-labeled data of unlabeled set by task-specific confidence estimation. This work presents a task-unified confidence estimation approach for semi-supervised few-shot learning, named pseudo-loss confidence metric (PLCM). It measures the data credibility by the loss distribution of pseudo-labels, which is synthetical considered multi-tasks. Specifically, pseudo-labeled data of different tasks are mapped to a unified metric space by mean of the pseudo-loss model, making it possible to learn the prior pseudo-loss distribution. Then, confidence of pseudo-labeled data is estimated according to the distribution component confidence of its pseudo-loss. Thus highly reliable pseudo-labeled data are selected to strengthen the classifier. Moreover, to overcome the pseudo-loss distribution shift and improve the effectiveness of classifier, we advance the multi-step training strategy coordinated with the class balance measures of class-apart selection and class weight. Experimental results on four popular benchmark datasets demonstrate that the proposed approach can effectively select pseudo-labeled data and achieve the state-of-the-art performance.
AB - Semi-supervised few-shot learning is developed to train a classifier that can adapt to new tasks with limited labeled data and a fixed quantity of unlabeled data. Most semi-supervised few-shot learning methods select pseudo-labeled data of unlabeled set by task-specific confidence estimation. This work presents a task-unified confidence estimation approach for semi-supervised few-shot learning, named pseudo-loss confidence metric (PLCM). It measures the data credibility by the loss distribution of pseudo-labels, which is synthetical considered multi-tasks. Specifically, pseudo-labeled data of different tasks are mapped to a unified metric space by mean of the pseudo-loss model, making it possible to learn the prior pseudo-loss distribution. Then, confidence of pseudo-labeled data is estimated according to the distribution component confidence of its pseudo-loss. Thus highly reliable pseudo-labeled data are selected to strengthen the classifier. Moreover, to overcome the pseudo-loss distribution shift and improve the effectiveness of classifier, we advance the multi-step training strategy coordinated with the class balance measures of class-apart selection and class weight. Experimental results on four popular benchmark datasets demonstrate that the proposed approach can effectively select pseudo-labeled data and achieve the state-of-the-art performance.
UR - http://www.scopus.com/inward/record.url?scp=85121410952&partnerID=8YFLogxK
U2 - 10.1109/ICCV48922.2021.00855
DO - 10.1109/ICCV48922.2021.00855
M3 - 会议稿件
AN - SCOPUS:85121410952
T3 - Proceedings of the IEEE International Conference on Computer Vision
SP - 8651
EP - 8660
BT - Proceedings - 2021 IEEE/CVF International Conference on Computer Vision, ICCV 2021
PB - Institute of Electrical and Electronics Engineers Inc.
T2 - 18th IEEE/CVF International Conference on Computer Vision, ICCV 2021
Y2 - 11 October 2021 through 17 October 2021
ER -