TY - GEN
T1 - Progressive graph-based transductive learning for multi-modal classification of brain disorder disease
AU - Wang, Zhengxia
AU - Zhu, Xiaofeng
AU - Adeli, Ehsan
AU - Zhu, Yingying
AU - Zu, Chen
AU - Nie, Feiping
AU - Shen, Dinggang
AU - Wu, Guorong
N1 - Publisher Copyright:
© Springer International Publishing AG 2016.
PY - 2016
Y1 - 2016
N2 - Graph-based Transductive Learning (GTL) is a powerful tool in computer-assisted diagnosis,especially when the training data is not sufficient to build reliable classifiers. Conventional GTL approaches first construct a fixed subject-wise graph based on the similarities of observed features (i.e.,extracted from imaging data) in the feature domain,and then follow the established graph to propagate the existing labels from training to testing data in the label domain. However,such a graph is exclusively learned in the feature domain and may not be necessarily optimal in the label domain. This may eventually undermine the classification accuracy. To address this issue,we propose a progressive GTL (pGTL) method to progressively find an intrinsic data representation. To achieve this,our pGTL method iteratively (1) refines the subject-wise relationships observed in the feature domain using the learned intrinsic data representation in the label domain,(2) updates the intrinsic data representation from the refined subject-wise relationships,and (3) verifies the intrinsic data representation on the training data,in order to guarantee an optimal classification on the new testing data. Furthermore,we extend our pGTL to incorporate multi-modal imaging data,to improve the classification accuracy and robustness as multi-modal imaging data can provide complementary information. Promising classification results in identifying Alzheimer’s disease (AD),Mild Cognitive Impairment (MCI),and Normal Control (NC) subjects are achieved using MRI and PET data.
AB - Graph-based Transductive Learning (GTL) is a powerful tool in computer-assisted diagnosis,especially when the training data is not sufficient to build reliable classifiers. Conventional GTL approaches first construct a fixed subject-wise graph based on the similarities of observed features (i.e.,extracted from imaging data) in the feature domain,and then follow the established graph to propagate the existing labels from training to testing data in the label domain. However,such a graph is exclusively learned in the feature domain and may not be necessarily optimal in the label domain. This may eventually undermine the classification accuracy. To address this issue,we propose a progressive GTL (pGTL) method to progressively find an intrinsic data representation. To achieve this,our pGTL method iteratively (1) refines the subject-wise relationships observed in the feature domain using the learned intrinsic data representation in the label domain,(2) updates the intrinsic data representation from the refined subject-wise relationships,and (3) verifies the intrinsic data representation on the training data,in order to guarantee an optimal classification on the new testing data. Furthermore,we extend our pGTL to incorporate multi-modal imaging data,to improve the classification accuracy and robustness as multi-modal imaging data can provide complementary information. Promising classification results in identifying Alzheimer’s disease (AD),Mild Cognitive Impairment (MCI),and Normal Control (NC) subjects are achieved using MRI and PET data.
UR - http://www.scopus.com/inward/record.url?scp=84996598688&partnerID=8YFLogxK
U2 - 10.1007/978-3-319-46720-7_34
DO - 10.1007/978-3-319-46720-7_34
M3 - 会议稿件
AN - SCOPUS:84996598688
SN - 9783319467191
T3 - Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
SP - 291
EP - 299
BT - Medical Image Computing and Computer-Assisted Intervention - MICCAI 2016 - 19th International Conference, Proceedings
A2 - Ourselin, Sebastian
A2 - Joskowicz, Leo
A2 - Sabuncu, Mert R.
A2 - Wells, William
A2 - Unal, Gozde
PB - Springer Verlag
T2 - 1st International Workshop on Simulation and Synthesis in Medical Imaging, SASHIMI 2016 held in conjunction with 19th International Conference on Medical Image Computing and Computer-Assisted Intervention, MICCAI 2016
Y2 - 21 October 2016 through 21 October 2016
ER -