TY - JOUR
T1 - Process parameter analysis of inertia friction welding nickel-based superalloy
AU - Wang, F. F.
AU - Li, W. Y.
AU - Li, J. L.
AU - Vairis, A.
PY - 2014/4
Y1 - 2014/4
N2 - A two-dimensional axisymmetric model for the inertia friction welding (IFW) of a nickel-based superalloy was developed. The influences from the axial pressure, initial rotational speed, and moment of inertia of the flywheel on the interface temperature and axial shortening were systemically examined. The analysis shows that the mechanical energy mainly depends on the initial rotational speed, and a relatively high axial pressure will increase conversion efficiency from mechanical energy to effective welding heat. The axial shortening is found to be approximately proportional to the square of initial rotational speed while logarithmical to the axial pressure. Based on this work, the weldability criteria for IFW nickel-based superalloy was established. Additionally, the approach for welding parameter optimization was performed considering the evolution of temperature profiles from various parameters. The results show that the axial pressure has a more obvious effect on the width of high-temperature zone than the rotational speed during the quick shortening stage.
AB - A two-dimensional axisymmetric model for the inertia friction welding (IFW) of a nickel-based superalloy was developed. The influences from the axial pressure, initial rotational speed, and moment of inertia of the flywheel on the interface temperature and axial shortening were systemically examined. The analysis shows that the mechanical energy mainly depends on the initial rotational speed, and a relatively high axial pressure will increase conversion efficiency from mechanical energy to effective welding heat. The axial shortening is found to be approximately proportional to the square of initial rotational speed while logarithmical to the axial pressure. Based on this work, the weldability criteria for IFW nickel-based superalloy was established. Additionally, the approach for welding parameter optimization was performed considering the evolution of temperature profiles from various parameters. The results show that the axial pressure has a more obvious effect on the width of high-temperature zone than the rotational speed during the quick shortening stage.
KW - Finite element method
KW - Inertia friction welding
KW - Nickel-based superalloy
KW - Process parameter optimization
UR - http://www.scopus.com/inward/record.url?scp=84899093728&partnerID=8YFLogxK
U2 - 10.1007/s00170-013-5569-6
DO - 10.1007/s00170-013-5569-6
M3 - 文章
AN - SCOPUS:84899093728
SN - 0268-3768
VL - 71
SP - 1909
EP - 1918
JO - International Journal of Advanced Manufacturing Technology
JF - International Journal of Advanced Manufacturing Technology
IS - 9-12
ER -