Probabilistic non-negative matrix factorization and its robust extensions for topic modeling

Minnan Luo, Feiping Nie, Xiaojun Chang, Yi Yang, Alexander Hauptmann, Qinghua Zheng

科研成果: 会议稿件论文同行评审

29 引用 (Scopus)

摘要

Traditional topic model with maximum likelihood estimate inevitably suffers from the conditional independence of words given the documents topic distribution. In this paper, we follow the generative procedure of topic model and learn the topic-word distribution and topics distribution via directly approximating the word-document co-occurrence matrix with matrix decomposition technique. These methods include: (1) Approximating the normalized document-word conditional distribution with the documents probability matrix and words probability matrix based on probabilistic non-negative matrix factorization (NMF); (2) Since the standard NMF is well known to be non-robust to noises and outliers, we extended the probabilistic NMF of the topic model to its robust versions using ℓ2, 1 -norm and capped ℓ2, 1 -norm based loss functions, respectively. The proposed framework inherits the explicit probabilistic meaning of factors in topic models and simultaneously makes the conditional independence assumption on words unnecessary. Straightforward and efficient algorithms are exploited to solve the corresponding non-smooth and non-convex problems. Experimental results over several benchmark datasets illustrate the effectiveness and superiority of the proposed methods.

源语言英语
2308-2314
页数7
出版状态已出版 - 2017
活动31st AAAI Conference on Artificial Intelligence, AAAI 2017 - San Francisco, 美国
期限: 4 2月 201710 2月 2017

会议

会议31st AAAI Conference on Artificial Intelligence, AAAI 2017
国家/地区美国
San Francisco
时期4/02/1710/02/17

指纹

探究 'Probabilistic non-negative matrix factorization and its robust extensions for topic modeling' 的科研主题。它们共同构成独一无二的指纹。

引用此