Preserving Background Sound in Noise-Robust Voice Conversion Via Multi-Task Learning

Jixun Yao, Yi Lei, Qing Wang, Pengcheng Guo, Ziqian Ning, Lei Xie, Hai Li, Junhui Liu, Danming Xie

科研成果: 书/报告/会议事项章节会议稿件同行评审

8 引用 (Scopus)

摘要

Background sound is an informative form of art that is helpful in providing a more immersive experience in real-application voice conversion (VC) scenarios. However, prior research about VC, mainly focusing on clean voices, pay rare attention to VC with background sound. The critical problem for preserving background sound in VC is inevitable speech distortion by the neural separation model and the cascade mismatch between the source separation model and the VC model. In this paper, we propose an end-to-end framework via multitask learning which sequentially cascades a source separation (SS) module, a bottleneck feature extraction module and a VC module. Specifically, the source separation task explicitly considers critical phase information and limits the distortion caused by the imperfect separation process. The source separation task, the typical VC task and the unified task share a uniform reconstruction loss constrained by joint training to reduce the mismatch between the SS and VC modules. Experimental results demonstrate that our proposed framework significantly outperforms the baseline systems while achieving comparable quality and speaker similarity to the VC models trained with clean data.

源语言英语
主期刊名ICASSP 2023 - 2023 IEEE International Conference on Acoustics, Speech and Signal Processing, Proceedings
出版商Institute of Electrical and Electronics Engineers Inc.
ISBN(电子版)9781728163277
DOI
出版状态已出版 - 2023
活动48th IEEE International Conference on Acoustics, Speech and Signal Processing, ICASSP 2023 - Rhodes Island, 希腊
期限: 4 6月 202310 6月 2023

出版系列

姓名ICASSP, IEEE International Conference on Acoustics, Speech and Signal Processing - Proceedings
2023-June
ISSN(印刷版)1520-6149

会议

会议48th IEEE International Conference on Acoustics, Speech and Signal Processing, ICASSP 2023
国家/地区希腊
Rhodes Island
时期4/06/2310/06/23

指纹

探究 'Preserving Background Sound in Noise-Robust Voice Conversion Via Multi-Task Learning' 的科研主题。它们共同构成独一无二的指纹。

引用此