TY - JOUR
T1 - Polyvinylidene difluoride-based composite
T2 - glassy dynamics and pretransitional behaviour
AU - Starzonek, Szymon
AU - Zhang, Kena
AU - Drozd-Rzoska, Aleksandra
AU - Rzoska, Sylwester J.
AU - Pawlikowska, Emilia
AU - Szafran, Mikolaj
AU - Gao, Feng
N1 - Publisher Copyright:
© 2020, The Author(s).
PY - 2020/3/1
Y1 - 2020/3/1
N2 - Abstract: This paper presents results of broadband dielectric spectroscopy studies in the composite system for which particularly strong interactions between polyvinylidene difluoride (PVDF: ferroelectric polymer, TC = 453−473 K) matrix and barium strontium titanate (BST) ferroelectric micro-particles can be expected. For PVDF the super-Arrhenius (SA) dynamics, associated with segmental motions freezing at the glass temperature Tg = 235 K, is evidenced. The addition of BST particles qualitatively changes dynamics, converting the SA-type behaviour in PVDF to the clear Arrhenius one in BST/PVDF composite. The latter crossovers to the relaxor-type SA dynamics on cooling, exactly at the glass temperature of PVDF. The preliminary model explaining such unique behaviour is proposed. For the consistent portraying of the SA evolution of primary relaxation times in PVDF and BST/PVDF, the activation energy index analysis was carried out and the new equation, entropy and symmetry controlled, is introduced. Studies are accomplished by the analysis of the ferroelectric-paraelectric transition in PVDF and for the composite system. They led to the discovery of the strong pretransitional anomaly of dε∕dT, extending even to the vicinity of the room temperature, The semi-discontinuous nature of melting in PVDF and its composites, with the discontinuity metric △T ≈ 20 K is suggested. Graphical abstract: [Figure not available: see fulltext.]
AB - Abstract: This paper presents results of broadband dielectric spectroscopy studies in the composite system for which particularly strong interactions between polyvinylidene difluoride (PVDF: ferroelectric polymer, TC = 453−473 K) matrix and barium strontium titanate (BST) ferroelectric micro-particles can be expected. For PVDF the super-Arrhenius (SA) dynamics, associated with segmental motions freezing at the glass temperature Tg = 235 K, is evidenced. The addition of BST particles qualitatively changes dynamics, converting the SA-type behaviour in PVDF to the clear Arrhenius one in BST/PVDF composite. The latter crossovers to the relaxor-type SA dynamics on cooling, exactly at the glass temperature of PVDF. The preliminary model explaining such unique behaviour is proposed. For the consistent portraying of the SA evolution of primary relaxation times in PVDF and BST/PVDF, the activation energy index analysis was carried out and the new equation, entropy and symmetry controlled, is introduced. Studies are accomplished by the analysis of the ferroelectric-paraelectric transition in PVDF and for the composite system. They led to the discovery of the strong pretransitional anomaly of dε∕dT, extending even to the vicinity of the room temperature, The semi-discontinuous nature of melting in PVDF and its composites, with the discontinuity metric △T ≈ 20 K is suggested. Graphical abstract: [Figure not available: see fulltext.]
KW - Solid State and Materials
UR - http://www.scopus.com/inward/record.url?scp=85083079040&partnerID=8YFLogxK
U2 - 10.1140/epjb/e2020-100130-y
DO - 10.1140/epjb/e2020-100130-y
M3 - 文章
AN - SCOPUS:85083079040
SN - 1434-6028
VL - 93
JO - European Physical Journal B
JF - European Physical Journal B
IS - 3
M1 - 55
ER -