Polydimethylsiloxane-Based Giant Glycosylated Polymersomes with Tunable Bacterial Affinity

Liam Martin, Pratik Gurnani, Junliang Zhang, Matthias Hartlieb, Neil R. Cameron, Ahmed M. Eissa, Sébastien Perrier

科研成果: 期刊稿件文章同行评审

17 引用 (Scopus)

摘要

A synthetic cell mimic in the form of giant glycosylated polymersomes (GGPs) comprised of a novel amphiphilic diblock copolymer is reported. A synthetic approach involving a poly(dimethylsiloxane) (PDMS) macro-chain transfer agent (macroCTA) and postpolymerization modification was used to marry the hydrophobic and highly flexible properties of PDMS with the biological activity of glycopolymers. 2-Bromoethyl acrylate (BEA) was first polymerized using a PDMS macroCTA (Mn,th ≈ 4900 g·mol-1, D = 1.1) to prepare well-defined PDMS-b-pBEA diblock copolymers (D = 1.1) that were then substituted with 1-thio-β-d-glucose or 1-thio-β-d-galactose under facile conditions to yield PDMS-b-glycopolymers. Compositions possessing ≈25% of the glycopolymer block (by mass) were able to adopt a vesicular morphology in aqueous solution (≈210 nm in diameter), as indicated by TEM and light scattering techniques. The resulting carbohydrate-decorated polymersomes exhibited selective binding with the lectin concanavalin A (Con A), as demonstrated by turbidimetric experiments. Self-assembly of the same diblock copolymer compositions using an electroformation method yielded GGPs (ranging from 2-20 μm in diameter). Interaction of these cell-sized polymersomes with fimH positive E. coli was then studied via confocal microscopy. The glucose-decorated GGPs were found to cluster upon addition of the bacteria, while galactose-decorated GGPs could successfully interact with (and possibly immobilize) the bacteria without the onset of clustering. This demonstrates an opportunity to modulate the response of these synthetic cell mimics (protocells) toward biological entities through exploitation of selective ligand-receptor interactions, which may be readily tuned through a considered choice of carbohydrate functionality.

源语言英语
页(从-至)1297-1307
页数11
期刊Biomacromolecules
20
3
DOI
出版状态已出版 - 11 3月 2019
已对外发布

指纹

探究 'Polydimethylsiloxane-Based Giant Glycosylated Polymersomes with Tunable Bacterial Affinity' 的科研主题。它们共同构成独一无二的指纹。

引用此