Pixel-aware deep function-mixture network for spectral super-resolution

Lei Zhang, Zhiqiang Lang, Peng Wang, Wei Wei, Shengcai Liao, Ling Shao, Yanning Zhang

科研成果: 书/报告/会议事项章节会议稿件同行评审

82 引用 (Scopus)

摘要

Spectral super-resolution (SSR) aims at generating a hyperspectral image (HSI) from a given RGB image. Recently, a promising direction is to learn a complicated mapping function from the RGB image to the HSI counterpart using a deep convolutional neural network. This essentially involves mapping the RGB context within a size-specific receptive field centered at each pixel to its spectrum in the HSI. The focus thereon is to appropriately determine the receptive field size and establish the mapping function from RGB context to the corresponding spectrum. Due to their differences in category or spatial position, pixels in HSIs often require different-sized receptive fields and distinct mapping functions. However, few efforts have been invested to explicitly exploit this prior. To address this problem, we propose a pixel-aware deep function-mixture network for SSR, which is composed of a new class of modules, termed function-mixture (FM) blocks. Each FM block is equipped with some basis functions, i.e., parallel subnets of different-sized receptive fields. Besides, it incorporates an extra subnet as a mixing function to generate pixel-wise weights, and then linearly mixes the outputs of all basis functions with those generated weights. This enables us to pixel-wisely determine the receptive field size and the mapping function. Moreover, we stack several such FM blocks to further increase the flexibility of the network in learning the pixel-wise mapping. To encourage feature reuse, intermediate features generated by the FM blocks are fused in late stage, which proves to be effective for boosting the SSR performance. Experimental results on three benchmark HSI datasets demonstrate the superiority of the proposed method.

源语言英语
主期刊名AAAI 2020 - 34th AAAI Conference on Artificial Intelligence
出版商AAAI press
12821-12828
页数8
ISBN(电子版)9781577358350
出版状态已出版 - 2020
活动34th AAAI Conference on Artificial Intelligence, AAAI 2020 - New York, 美国
期限: 7 2月 202012 2月 2020

出版系列

姓名AAAI 2020 - 34th AAAI Conference on Artificial Intelligence

会议

会议34th AAAI Conference on Artificial Intelligence, AAAI 2020
国家/地区美国
New York
时期7/02/2012/02/20

指纹

探究 'Pixel-aware deep function-mixture network for spectral super-resolution' 的科研主题。它们共同构成独一无二的指纹。

引用此