摘要
Mn2+ ions doped CsPbCl3 perovskite nanocrystals (NCs) exhibit superiority of spin-associated optical and electrical properties. However, precisely controlling the doping concentration, doping location, and the mono-distribution of Mn2+ ions in the large-micro-size CsPbCl3 perovskite host is a formidable challenge. Here, the micro size CsPbCl3 perovskite crystals (MCs) are reported with uniform Mn2+ ions doping by self-assembly of Mn2+ ions doped CsPbCl3 perovskite NCs. The electron–phonon coupling strength is enhanced in the perovskite self-assembled CsPbCl3 MCs, which remarkably accelerates the PL decay of Mn2+ ions in room temperature. Furthermore, the phonon-involved PL emission splits to two peaks at low temperature of 80 K, due to the phonon emission and absorption-induced energy exchange for exciton recombination in Mn2+ ions. These findings not only demonstrate a novel material system but also introduce a new theoretical framework for phonon-modulated PL manipulation in Mn2+-doped perovskite materials.
源语言 | 英语 |
---|---|
文章编号 | 2413402 |
期刊 | Advanced Science |
卷 | 12 |
期 | 11 |
DOI | |
出版状态 | 已出版 - 20 3月 2025 |