TY - JOUR
T1 - Phase selection and re-melting-induced anomalous eutectics in undercooled Ni–38 wt% Si alloys
AU - Lai, Cun
AU - Wang, Haifeng
AU - Pu, Qian
AU - Xu, Tingting
AU - Yang, Jinsong
AU - Zhang, Xi
AU - Liu, Feng
N1 - Publisher Copyright:
© 2016, Springer Science+Business Media New York.
PY - 2016/12/1
Y1 - 2016/12/1
N2 - The Ni–38 wt% Si alloy whose eutectic products are two stoichiometric intermetallic compounds (i.e., NiSi and NiSi2) was undercooled by the melt fluxing technique. After in situ observations of the recalescence processes using a high-speed camera and by electron back-scattering diffraction analysis of the solidification microstructures, the crystal growth velocities, phase selection, and microstructure evolutions were studied. Due to a growth-controlled mechanism, the primary phase changes from the NiSi to the NiSi2 phase at a critical undercooling ΔT ≈ 48 K. Even in the absence of the driving force of chemical superheating, the transition from regular eutectics to anomalous eutectics happens. The reason is that the single-phase dendrite of NiSi2 phase solidifies firstly and then the NiSi phase grows epitaxially to form an uncoupled eutectic-dendrite at high undercooling. The present work provides further experimental evidences for the dual origins of anomalous eutectics (e.g., uncoupled eutectic-dendrite growth during the recalescence stage and coupled lamellar eutectic growth at low undercooling during the post-recalescence stage) and is helpful for understanding of non-equilibrium phenomena in undercooled melts.
AB - The Ni–38 wt% Si alloy whose eutectic products are two stoichiometric intermetallic compounds (i.e., NiSi and NiSi2) was undercooled by the melt fluxing technique. After in situ observations of the recalescence processes using a high-speed camera and by electron back-scattering diffraction analysis of the solidification microstructures, the crystal growth velocities, phase selection, and microstructure evolutions were studied. Due to a growth-controlled mechanism, the primary phase changes from the NiSi to the NiSi2 phase at a critical undercooling ΔT ≈ 48 K. Even in the absence of the driving force of chemical superheating, the transition from regular eutectics to anomalous eutectics happens. The reason is that the single-phase dendrite of NiSi2 phase solidifies firstly and then the NiSi phase grows epitaxially to form an uncoupled eutectic-dendrite at high undercooling. The present work provides further experimental evidences for the dual origins of anomalous eutectics (e.g., uncoupled eutectic-dendrite growth during the recalescence stage and coupled lamellar eutectic growth at low undercooling during the post-recalescence stage) and is helpful for understanding of non-equilibrium phenomena in undercooled melts.
UR - http://www.scopus.com/inward/record.url?scp=84984846539&partnerID=8YFLogxK
U2 - 10.1007/s10853-016-0312-y
DO - 10.1007/s10853-016-0312-y
M3 - 文章
AN - SCOPUS:84984846539
SN - 0022-2461
VL - 51
SP - 10990
EP - 11001
JO - Journal of Materials Science
JF - Journal of Materials Science
IS - 24
ER -