TY - JOUR
T1 - Periodicity-assist double delay-controlled stochastic resonance for the fault detection of bearings
AU - Xu, Haitao
AU - Zhou, Shengxi
N1 - Publisher Copyright:
© 2023 Elsevier Ltd
PY - 2024/2/15
Y1 - 2024/2/15
N2 - This paper analyses the stochastic resonance of a double delay-controlled nonlinear system based on the high-order-degradation potential function. It provides a theoretical derivation of the stationary probability density, mean first-passage time (MFPT), and signal-to-noise ratio (SNR), while the marginal probability density is examined via Monte-Carlo simulation. In the field of fault detection for faulty bearings, the stochastic resonance of the nonlinear system encounters a challenge where the exact fault period must be known beforehand. Unfortunately, it is not available for the real engineering application. Consequently, this paper proposes the periodicity-assisted stochastic resonance method, which uses the blind deconvolution technique. The proposed method allows for adaptive determination of the fault frequency from the vibration signal and successfully enhances the power of the signal component corresponding to the determined fault frequency. Compared with the state-of-the-art methods, the proposed method shows better performance, which is validated by the simulated and experimental data. Overall, the proposed method is advantageous for enhancing the weak fault characteristic which is interfered by the strong noise and random impulses.
AB - This paper analyses the stochastic resonance of a double delay-controlled nonlinear system based on the high-order-degradation potential function. It provides a theoretical derivation of the stationary probability density, mean first-passage time (MFPT), and signal-to-noise ratio (SNR), while the marginal probability density is examined via Monte-Carlo simulation. In the field of fault detection for faulty bearings, the stochastic resonance of the nonlinear system encounters a challenge where the exact fault period must be known beforehand. Unfortunately, it is not available for the real engineering application. Consequently, this paper proposes the periodicity-assisted stochastic resonance method, which uses the blind deconvolution technique. The proposed method allows for adaptive determination of the fault frequency from the vibration signal and successfully enhances the power of the signal component corresponding to the determined fault frequency. Compared with the state-of-the-art methods, the proposed method shows better performance, which is validated by the simulated and experimental data. Overall, the proposed method is advantageous for enhancing the weak fault characteristic which is interfered by the strong noise and random impulses.
KW - Double delay-controlled nonlinear system
KW - Fault detection
KW - High-order-degradation potential function
KW - Stochastic resonance
UR - http://www.scopus.com/inward/record.url?scp=85182660312&partnerID=8YFLogxK
U2 - 10.1016/j.measurement.2023.114018
DO - 10.1016/j.measurement.2023.114018
M3 - 文章
AN - SCOPUS:85182660312
SN - 0263-2241
VL - 225
JO - Measurement: Journal of the International Measurement Confederation
JF - Measurement: Journal of the International Measurement Confederation
M1 - 114018
ER -