Path planning of UAV based on hierarchical genetic algorithm with optimized search region

Jinghua Li, Yibin Huang, Zhao Xu, Jing Wang, Mou Chen

科研成果: 书/报告/会议事项章节会议稿件同行评审

22 引用 (Scopus)

摘要

In general, the use of genetic algorithms (GA) for unmanned aerial vehicle (UAV) path planning in the whole mission area will cause detours. To improve this issue, a hierarchical genetic algorithm with optimized search region (OSR-HGA) is proposed. This algorithm reduces the search area of hierarchical genetic algorithm automatically by evaluating the distribution of threat sources in the mission area. To guide the searching direction of the algorithm and reduce the occurrence of detours, the heading correction cost and minimum turning radius cost are added to the cost function. The experimental results show the new method can enhance the stability of path planning algorithm by finding shorter paths with less cost and reducing the occurrence of detours effectively.

源语言英语
主期刊名2017 13th IEEE International Conference on Control and Automation, ICCA 2017
出版商IEEE Computer Society
1033-1038
页数6
ISBN(电子版)9781538626795
DOI
出版状态已出版 - 4 8月 2017
活动13th IEEE International Conference on Control and Automation, ICCA 2017 - Ohrid, 马其顿,前南斯拉夫共和国
期限: 3 7月 20176 7月 2017

出版系列

姓名IEEE International Conference on Control and Automation, ICCA
ISSN(印刷版)1948-3449
ISSN(电子版)1948-3457

会议

会议13th IEEE International Conference on Control and Automation, ICCA 2017
国家/地区马其顿,前南斯拉夫共和国
Ohrid
时期3/07/176/07/17

指纹

探究 'Path planning of UAV based on hierarchical genetic algorithm with optimized search region' 的科研主题。它们共同构成独一无二的指纹。

引用此