摘要
Filament-wound cylinder always demonstrates diverse performances due to the different designed parameters. This paper aims to provide a hybrid method for optimizing the winding angle and fiber volume content of a composite cylinder under internal pressure considering the stability of strength ratio. The analytical model of the composite cylinder under internal pressure is established firstly based on the three-dimension (3D) elastic theory. Then, the local sensitivities for winding angle and fiber volume content are analyzed by employing the difference method. Further, a novel method of interval range division is proposed to deal with the three-dimension sensitivity, and thus the optimal parameter ranges are determined to achieve the relatively stable strength ratio based on the Tsai-Wu failure criterion. Finally, the optimized winding angle and fiber volume content are confirmed by establishing the ranges of the optimal parameters using the hybrid method of GA-PSO. The numerical results show that it is feasible to obtain the optimal winding angle and fiber volume content to improve the stability and load capacity for filament-wound cylinders.
源语言 | 英语 |
---|---|
文章编号 | 113861 |
期刊 | Composite Structures |
卷 | 267 |
DOI | |
出版状态 | 已出版 - 1 7月 2021 |