TY - JOUR
T1 - Oxygen vacancies-rich TiO2−x enhanced composite polyurethane electrolytes for high-voltage solid-state lithium metal batteries
AU - Xu, Xiaoning
AU - Pei, Fei
AU - Lin, Wenjie
AU - Lei, Jia
AU - Yang, Yuhan
AU - Xu, Henghui
AU - Li, Zhen
AU - Huang, Yunhui
N1 - Publisher Copyright:
© The Author(s) 2025. Published by Tsinghua University Press.
PY - 2025/4
Y1 - 2025/4
N2 - Due to the favorable interfacial stability with electrodes, excellent processability, and reasonable material cost, organic–inorganic composite solid-state electrolytes have attracted broad interests in the field of solid-state batteries. In this study, we have developed a solid-state composite electrolyte with polyurethane (PU) as polymer matrix and TiO2−x as nanofiller (denoted as PUL-TiO2−x). The block copolymer PU features alternating soft and hard segments, which offers distinct advantages due to its unique structural arrangement. The soft segment of the block copolymer facilitates the dissociation of lithium salt, enabling the conduction of Li+, while the rich hydrogen bond network formed by the hard segment ensures the mechanical strength of the electrolyte. The profusion of Lewis acid sites on the TiO2−x surface facilitates interactions with ether oxygen groups and bistrifluoromethanesulfonimide (TFSI−) anions, thereby enhancing ionic conductivity (σ) and expanding the electrochemical stability window of the electrolyte. Notably, the PUL-TiO2−x electrolyte exhibits an impressive σ of 2.19 × 10−4 S·cm−1 at 40 °C, a Li+ transference number of 0.47, and an electrochemical stability window of 4.98 V. The resulting LiNi0.8Co0.1Mn0.1O2 (NCM811)||Li battery demonstrates a specific capacity of 171 mAh·g−1 and exhibits excellent cycling stability, maintaining its performance over 270 cycles at 40 °C. These findings underscore the immense potential of the PUL-TiO2−x in advancing the development of high-performance all-solid-state lithium batteries.
AB - Due to the favorable interfacial stability with electrodes, excellent processability, and reasonable material cost, organic–inorganic composite solid-state electrolytes have attracted broad interests in the field of solid-state batteries. In this study, we have developed a solid-state composite electrolyte with polyurethane (PU) as polymer matrix and TiO2−x as nanofiller (denoted as PUL-TiO2−x). The block copolymer PU features alternating soft and hard segments, which offers distinct advantages due to its unique structural arrangement. The soft segment of the block copolymer facilitates the dissociation of lithium salt, enabling the conduction of Li+, while the rich hydrogen bond network formed by the hard segment ensures the mechanical strength of the electrolyte. The profusion of Lewis acid sites on the TiO2−x surface facilitates interactions with ether oxygen groups and bistrifluoromethanesulfonimide (TFSI−) anions, thereby enhancing ionic conductivity (σ) and expanding the electrochemical stability window of the electrolyte. Notably, the PUL-TiO2−x electrolyte exhibits an impressive σ of 2.19 × 10−4 S·cm−1 at 40 °C, a Li+ transference number of 0.47, and an electrochemical stability window of 4.98 V. The resulting LiNi0.8Co0.1Mn0.1O2 (NCM811)||Li battery demonstrates a specific capacity of 171 mAh·g−1 and exhibits excellent cycling stability, maintaining its performance over 270 cycles at 40 °C. These findings underscore the immense potential of the PUL-TiO2−x in advancing the development of high-performance all-solid-state lithium batteries.
KW - composite polymer electrolytes
KW - high-voltage cathodes
KW - polyurethane electrolyte
KW - solid-state lithium metal batteries
UR - http://www.scopus.com/inward/record.url?scp=105003242270&partnerID=8YFLogxK
U2 - 10.26599/NR.2025.94907304
DO - 10.26599/NR.2025.94907304
M3 - 文章
AN - SCOPUS:105003242270
SN - 1998-0124
VL - 18
JO - Nano Research
JF - Nano Research
IS - 4
M1 - 94907304
ER -