摘要
The application of hyperspectral image (HSI) clustering has become widely used in the field of remote sensing. Traditional fuzzy K-means clustering methods often struggle with HSI data due to the significant levels of noise, consequently resulting in segmentation inaccuracies. To address this limitation, this letter introduces an innovative outlier indicator-based projection fuzzy K-means clustering (OIPFK) algorithm for clustering of HSI data, enhancing the efficacy and robustness of previous fuzzy K-means methodologies through a two-pronged strategy. Initially, an outlier indicator vector is constructed to identify noise and outliers by computing the distances between each data point in a reduced dimensional space. Subsequently, the OIPFK algorithm incorporates the fuzzy membership relationships between samples and clustering centers within this lower-dimensional framework, along with the integration of the outlier indicator vectors, to significantly mitigates the influence of noise and extraneous features. Moreover, an efficient iterative optimization algorithm is employed to address the optimization challenges inherent to OIPKM. Experimental results from three real-world hyperspectral image datasets demonstrate the effectiveness and superiority of our proposed method.
源语言 | 英语 |
---|---|
页(从-至) | 496-500 |
页数 | 5 |
期刊 | IEEE Signal Processing Letters |
卷 | 32 |
DOI | |
出版状态 | 已出版 - 2025 |