Oscillation and Migration of Bubbles within Ultrasonic Field

Wen Hua Wu, Peng Fei Yang, Wei Zhai, Bing Bo Wei

科研成果: 期刊稿件文章同行评审

15 引用 (Scopus)

摘要

The oscillation and migration of bubbles within an intensive ultrasonic field are important issues concerning acoustic cavitation in liquids. We establish a selection map of bubble oscillation mode related to initial bubble radius and driving sound pressure under 20 kHz ultrasound and analyze the individual-bubble migration induced by the combined effects of pressure gradient and acoustic streaming. Our results indicate that the pressure threshold of stable and transient cavitation decreases with the increasing initial bubble radius. At the pressure antinode, the Bjerknes force dominates the bubble migration, resulting in the large bubbles gathering toward antinode center, whereas small bubbles escape from antinode. By contrast, at the pressure node, the bubble migration is primarily controlled by acoustic streaming, which effectively weakens the bubble adhesion on the container walls, thereby enhancing the cavitation effect in the whole liquid.

源语言英语
文章编号084302
期刊Chinese Physics Letters
36
8
DOI
出版状态已出版 - 2019

指纹

探究 'Oscillation and Migration of Bubbles within Ultrasonic Field' 的科研主题。它们共同构成独一无二的指纹。

引用此