TY - JOUR
T1 - Optimization of rotational speed of main roll in profile ring rolling of GH4169 alloy
AU - Ma, Yiwei
AU - Wang, Zhihong
AU - Liu, Dong
AU - Zhu, Xinglin
AU - Yang, Zhishuo
PY - 2011/8
Y1 - 2011/8
N2 - The rotational speed of the main roll of a profile ring mill is critical for insuring the success of its rolling process. In this paper, a three dimensional finite element model of the profile ring rolling process is built based on the ABAQUS/Explicit algorithm. Using the proposed finite element model, the laws of the main roll rotational speed affecting the rolling process and the thermomechanical parameter distribution are analyzed systematically. A validity experiment is carried out for a compressor case ring of GH4169 alloy. The results show that axial shrinking of the profile ring is clearly observed when the rotational speed of the main roll is relatively high, and that the shrinkage is comparatively small when the rotational speed of the main roll is low. Additionally, with the increase of the rotational speed of the main roll, the thickness reduction per pass decreases, and the corresponding rolling force also decreases, but the inhomogeneity of temperature distribution within the ring increases. Therefore, it could be concluded that a lower rotational speed of the main roll should be adopted for profile ring rolling when the feed speed of the mandrel is constant.
AB - The rotational speed of the main roll of a profile ring mill is critical for insuring the success of its rolling process. In this paper, a three dimensional finite element model of the profile ring rolling process is built based on the ABAQUS/Explicit algorithm. Using the proposed finite element model, the laws of the main roll rotational speed affecting the rolling process and the thermomechanical parameter distribution are analyzed systematically. A validity experiment is carried out for a compressor case ring of GH4169 alloy. The results show that axial shrinking of the profile ring is clearly observed when the rotational speed of the main roll is relatively high, and that the shrinkage is comparatively small when the rotational speed of the main roll is low. Additionally, with the increase of the rotational speed of the main roll, the thickness reduction per pass decreases, and the corresponding rolling force also decreases, but the inhomogeneity of temperature distribution within the ring increases. Therefore, it could be concluded that a lower rotational speed of the main roll should be adopted for profile ring rolling when the feed speed of the mandrel is constant.
KW - Finite element simulation
KW - GH4169 alloy
KW - Profile ring
KW - Ring rolling process
KW - Rotational speed of main roll
UR - http://www.scopus.com/inward/record.url?scp=80052790946&partnerID=8YFLogxK
M3 - 文章
AN - SCOPUS:80052790946
SN - 1000-6893
VL - 32
SP - 1555
EP - 1562
JO - Hangkong Xuebao/Acta Aeronautica et Astronautica Sinica
JF - Hangkong Xuebao/Acta Aeronautica et Astronautica Sinica
IS - 8
ER -