Open-Vocabulary Video Anomaly Detection

Peng Wu, Xuerong Zhou, Guansong Pang, Yujia Sun, Jing Liu, Peng Wang, Yanning Zhang

科研成果: 期刊稿件会议文章同行评审

15 引用 (Scopus)

摘要

Current video anomaly detection (VAD) approaches with weak supervisions are inherently limited to a closed-set setting and may struggle in open-world applications where there can be anomaly categories in the test data unseen during training. A few recent studies attempt to tackle a more realistic setting, open-set VAD, which aims to detect unseen anomalies given seen anomalies and normal videos. However, such a setting focuses on predicting frame anomaly scores, having no ability to recognize the specific categories of anomalies, despite the fact that this ability is essential for building more informed video surveillance systems. This paper takes a step further and explores open-vocabulary video anomaly detection (OVVAD), in which we aim to leverage pre-trained large models to detect and categorize seen and unseen anomalies. To this end, we propose a model that decouples OVVAD into two mutually complementary tasks – class-agnostic detection and class-specific classification – and jointly optimizes both tasks. Particularly, we devise a semantic knowledge injection module to introduce semantic knowledge from large language models for the detection task, and design a novel anomaly synthesis module to generate pseudo unseen anomaly videos with the help of large vision generation models for the classification task. These semantic knowledge and synthesis anomalies substantially extend our model’s capability in detecting and categorizing a variety of seen and unseen anomalies. Extensive experiments on three widely-used benchmarks demonstrate our model achieves state-of-the-art performance on OVVAD task.

源语言英语
页(从-至)18297-18307
页数11
期刊Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition
DOI
出版状态已出版 - 2024
活动2024 IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2024 - Seattle, 美国
期限: 16 6月 202422 6月 2024

指纹

探究 'Open-Vocabulary Video Anomaly Detection' 的科研主题。它们共同构成独一无二的指纹。

引用此