TY - GEN
T1 - On observability of a relative attitude determination system based on stereo vision
AU - Bai, Bo
AU - Zhou, Jun
AU - Yu, Xiao Zhou
N1 - Publisher Copyright:
© 2015 Technical Committee on Control Theory, Chinese Association of Automation.
PY - 2015/9/11
Y1 - 2015/9/11
N2 - A relative attitude estimation algorithm is developed based on a stereo vision system and a gyroscope, and the observability of this algorithm is studied. First, we build the error model of the relative attitude determination system. Second, the observability of every state of the filter is studied. Third, by choosing different variables as the states of the error model, the unobservable subspace of the system is confirmed. Furthermore, the system structural decomposition reveals that this type of relative attitude determination system can only determine the relative attitude between the deputy and the chief and that their gyro drift errors are unobservable. In addition, the structural decomposition also tells us that when the feature points measured by the stereo vision system are greater than two, increasing the number of feature points provides little benefit for improving the observability of the gyro drift errors. Considering the incomplete observability of the original system, the star sensor is added into the system to enable it to be completely observable. The final simulation result indicates that after adding the star sensor, the system, which becomes completely observable, can estimate the body attitude, the relative attitude and the gyro error while providing improved accuracy.
AB - A relative attitude estimation algorithm is developed based on a stereo vision system and a gyroscope, and the observability of this algorithm is studied. First, we build the error model of the relative attitude determination system. Second, the observability of every state of the filter is studied. Third, by choosing different variables as the states of the error model, the unobservable subspace of the system is confirmed. Furthermore, the system structural decomposition reveals that this type of relative attitude determination system can only determine the relative attitude between the deputy and the chief and that their gyro drift errors are unobservable. In addition, the structural decomposition also tells us that when the feature points measured by the stereo vision system are greater than two, increasing the number of feature points provides little benefit for improving the observability of the gyro drift errors. Considering the incomplete observability of the original system, the star sensor is added into the system to enable it to be completely observable. The final simulation result indicates that after adding the star sensor, the system, which becomes completely observable, can estimate the body attitude, the relative attitude and the gyro error while providing improved accuracy.
KW - Gyro Error
KW - Observability Analysis
KW - Relative Attitude Determination
KW - Stereo Vision
UR - http://www.scopus.com/inward/record.url?scp=84946568339&partnerID=8YFLogxK
U2 - 10.1109/ChiCC.2015.7260434
DO - 10.1109/ChiCC.2015.7260434
M3 - 会议稿件
AN - SCOPUS:84946568339
T3 - Chinese Control Conference, CCC
SP - 5095
EP - 5100
BT - Proceedings of the 34th Chinese Control Conference, CCC 2015
A2 - Zhao, Qianchuan
A2 - Liu, Shirong
PB - IEEE Computer Society
T2 - 34th Chinese Control Conference, CCC 2015
Y2 - 28 July 2015 through 30 July 2015
ER -