Numerical investigation on effect of compressor performance in single rotor with micro-vortex generator

Shan Ma, Wuli Chu, Haoguang Zhang, Jinhua Lang, Haiyang Kuang

科研成果: 书/报告/会议事项章节会议稿件同行评审

摘要

The performance of axial compressor is considerably influenced by secondary flow, like corner separation between wall and blade in a compressor stage. An extensive experimental study of vortex generator (VG) applied on axial compressor was conducted by many scholars, in order to control these effects and improve the aerodynamic performance. According to their size, they are classified as traditional VGs (h/δ>0.5) and Micro-vortex generators (MVGs, h/δ=0.1∼0.5).MVGs is one of the hot spots of present research to restrain the secondary flow. In order to investigate the effect of MVGs used in rotor, this study was carried out on Northwestern Polytecnical University rotor (NPU rotor), which is a subsonic axial flow compressor rotor. The Vane-MVGs were placed at a distance of 11% chord length ahead of the leading edge on the end-wall. The characteristic line of 54% (8130RPM), 71% (10792RPM) and 84% (12768RPM) design speed were calculated by steady 3D RANS simulations with Spalart-Allmar turbulence model and compared with the corresponding MVGs cases, respectively. Results show that the stall margins of the 3 speeds with MVGs were larger than baseline, but the efficiency and pressure ratio were reduced in different degrees. In this paper, the flow characteristics at 54% (8130RPM) design speed and the development process of vortex generated by MVGs are analyzed in detail. The influence of MVGs height and stagger angle on rotor performance is also discussed.

源语言英语
主期刊名Turbomachinery
出版商American Society of Mechanical Engineers (ASME)
ISBN(电子版)9780791850787
DOI
出版状态已出版 - 2017
活动ASME Turbo Expo 2017: Turbomachinery Technical Conference and Exposition, GT 2017 - Charlotte, 美国
期限: 26 6月 201730 6月 2017

出版系列

姓名Proceedings of the ASME Turbo Expo
2A-2017

会议

会议ASME Turbo Expo 2017: Turbomachinery Technical Conference and Exposition, GT 2017
国家/地区美国
Charlotte
时期26/06/1730/06/17

指纹

探究 'Numerical investigation on effect of compressor performance in single rotor with micro-vortex generator' 的科研主题。它们共同构成独一无二的指纹。

引用此